

COURSE OVERVIEW DE0780 Drilling Fluids

Course Title

Drilling Fluids

Course Date/Venue

Please see page 3

Course Reference

DE0780

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed for engineers and field personnel involved in the planning and implementation of drilling programs. This course covers all aspects of drilling fluids technology, emphasizing both theory and practical application. Drilling is a complex operation requiring the marriage of different technologies and disciplines. Today's drilling personnel must have a working knowledge of drilling fluid in order to effectively drill a well. This course provides the fundamentals necessary to drill a well, whether it is a shallow well or a complex, high pressure well.

During this interactive course, participants will learn the basic system classifications and function of additives; the various types of fluids including clear fluid systems, solids-enhanced fluids, contaminants, and handling and transporting fluids treatments and corrosive; the corrosion, including drilling-fluids corrosive agents and packer fluids; the drilling fluid contaminants and corrective treatments; the selection of water phase salinity and activity for bore hole stability as well as non-aqueous fluids to meet drilling requirements and environmental concerns; and the non-aqueous drilling fluid systems.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply a comprehensive knowledge on drilling fluids
- Determine the basic system classifications and function of additives
- Discuss the various types of fluids including clear fluid systems, solids-enhanced fluids, contaminants, and handling and transporting fluids treatments and corrosive
- Identify the corrosion, including drilling-fluids corrosive agents and packer fluids
- Identify drilling fluid contaminants and prescribe corrective treatments
- Select water phase salinity and activity for bore hole stability and select non-aqueous fluids to meet drilling requirements and environmental concerns
- Manage non-aqueous drilling fluid systems

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of drilling fluids technology for drilling engineers, drilling representatives, drilling fluid engineers and contractor personnel, drilling supervisors, mud engineers, cementing engineers (offshore and onshore personnel), tool pushers, managers and technical support involved with drilling operations and responsible for the development, planning and application of the drilling fluids program.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:

-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Date/Venue

Session(s)	Date	Venue
1	April 19-23, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
2	May 18-22, 2026	Ruben Boardroom, The Rubens at The Palace, Buckingham Palace Road, London, United Kingdom
3	June 29-July 03, 2026	Salon Expo, NH Hotel Plaza de Armas, Seville, Spain
4	August 16-20, 2026	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
5	October 11-15, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
6	November 15-19, 2026	Pierre Lotti Meeting Room, Movenpick Hotel Istanbul Golden Horn, Istanbul, Turkey
7	December 13-17, 2026	Meeting Room 4, Four Seasons Hotel Cairo at Nile Plaza, Corniche El Nil, Garden City, Cairo, Egypt
8	January 10-14, 2027	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
9	February 07-11, 2027	Ruben Boardroom, The Rubens at The Palace, Buckingham Palace Road, London, United Kingdom
10	March 21-25, 2027	Salon Expo, NH Hotel Plaza de Armas, Seville, Spain

Course Fee

Istanbul	US\$ 8,500 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Doha	US\$ 8,500 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Seville	US\$ 8,800 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
London	US\$ 8,800 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 8,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Cairo	US\$ 8,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

- [British Accreditation Council \(BAC\)](#)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

- [The International Accreditors for Continuing Education and Training \(IACET - USA\)](#)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Chris Kapetan, PhD, MSc, is a **Senior Petroleum Engineer** with over 30 years of international experience within the **onshore** and **offshore oil & gas** industry. His wide experience covers **Drilling & Drilling Fluids**, **Rigs Inspection & Audit**, **Well Testing Operations & Analysis**, **Drilling Fluids Technology**, **Drilling Operations**, **Directional Drilling**, **Coiled Tubing Technology**, **Corrosion Control**, **Slickline**, **Wireline & Coil Tubing**, **Decision Analytic Modelling Methods** for **Economic Evaluation**, **Probabilistic Risk Analysis (Monte Carlo Simulator)**, **Risk Analysis Foundations**, **Global Oil Demand**, **Crude Oil Market**, **Global Oil Reserves**, **Oil Supply & Demand**, **Governmental Legislation**, **Contractual Agreements**, **Financial Modeling**, **Oil Contracts**, **Project Risk Analysis**, **Feasibility Analysis** Techniques, **Capital Operational Costs**, **Oil & Gas Exploration Methods**, **Reservoir Evaluation**, **Extraction of Oil & Gas**, **Crude Oil Types & Specifications**, **Sulphur**, **Sour Natural Gas**, **Natural Gas Sweetening**, **Petroleum Production**, **Field Layout**, **Production Techniques & Control**, **Surface Production Operations**, **Oil Processing**, **Oil Transportation-Methods**, **Flowmetering & Custody Transfer** and **Oil Refinery**. Further, he is also well-versed in Enhanced Oil Recovery (EOR), Electrical Submersible Pumps (ESP), **Oil Industries Orientation**, **Geophysics**, **Cased Hole Formation Evaluation**, **Cased Hole Applications**, **Cased Hole Logs**, **Production Operations**, **Production Management**, **Perforating Methods & Design**, **Perforating Operations**, **Fishing Operations**, **Well & Reservoir Testing**, **Reservoir Stimulation**, **Hydraulic Fracturing**, **Carbonate Acidizing**, **Sandstone Acidizing**, **Artificial Lift**, **Gas Lift Design**, **Gas Lift Operations**, **Petroleum Business**, **Petroleum Economics**, **Field Development Planning**, **Gas Lift Valve Changing & Installation**, **Well Completion Design & Operation**, **Well Surveillance**, **Well Testing**, **Well Stimulation & Control** and **Workover Planning**, **Completions & Workover**, **Rig Sizing**, **Hole Cleaning & Logging**, **Well Completion**, **Servicing** and **Work-Over Operations**, **Practical Reservoir Engineering**, **X-mas Tree & Wellhead Operations**, **Maintenance & Testing**, **Advanced Petrophysics/Interpretation of Well Composite**, **Construction Integrity & Completion**, **Pipeline Pigging**, **Corrosion Monitoring**, **Cathodic Protection** as well as **Root Cause Analysis (RCA)**, **Root Cause Failure Analysis (RCFA)**, **Gas Conditioning & Process Technology**, **Production Safety** and **Delusion of Asphalt**. Currently, he is the **Operations Consultant** & the **Technical Advisor** at **GEOTECH** and an independent **Drilling Operations Consultant** of various engineering services providers to the international clients as he offers his expertise in many areas of the **drilling & petroleum discipline** and is well **recognized & respected** for his process and procedural expertise as well as ongoing participation, interest and experience in continuing to promote technology to producers around the world.

Throughout his long career life, Dr. Chris has worked for many international companies and has spent several years **managing technically complex wellbore interventions** in both **drilling & servicing**. He is a **well-regarded** for his **process** and **procedural expertise**. Further, he was the **Operations Manager** at **ETP Crude Oil Pipeline Services** where he was fully responsible for optimum operations of crude oil pipeline, **workover** and **directional drilling**, **drilling rigs** and equipment, drilling of various geothermal deep wells and **exploration wells**. Dr. Chris was the **Drilling & Workover Manager & Superintendent** for **Kavala Oil** wherein he was responsible for supervision of **drilling operations** and **offshore exploration**, quality control of performance of **rigs**, **coiled tubing**, crude oil transportation via pipeline and abandonment of **well** as per the API requirements. He had occupied various key positions as the **Drilling Operations Consultant**, **Site Manager**, **Branch Manager**, **Senior Drilling & Workover Manager & Engineer** and **Drilling & Workover Engineer**, **Operations Consultant**, **Technical Advisor** in several petroleum companies responsible mainly on an **offshore sour oil field** (under water flood and gas lift) and a gas field. Further, Dr. Chris has been a **Professor** of the **Oil Technology College**.

Dr. Chris has **PhD** in **Reservoir Engineering** and a **Master** degree in **Drilling & Production Engineering** from the **Petrol-Gaze Din Ploiesti University**. Further, he is a **Certified Surfaced BOP Stack Supervisor** of **IWCF**, a **Certified Instructor/Trainer**, a **Certified Trainer/Assessor/Internal Verifier** by the **Institute of Leadership & Management (ILM)** and has conducted **numerous short courses, seminars and workshops** and has published several technical books on **Production Logging**, **Safety Drilling Rigs** and **Oil Reservoir**.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 – 0800	<i>Registration & Coffee</i>
0800 – 0815	<i>Welcome & Introduction</i>
0815 – 0830	PRE-TEST
0830 – 0930	Classification of Drilling Fluids & Additives <i>Basic System Classifications • Functions of Additives</i>
0930 – 0945	<i>Break</i>
0945 – 1130	Completion Fluids <i>Overview • Clear-Fluid Systems • Solids-Enhanced Fluids • Contaminants • Handling & Transporting Fluids</i>
1130 – 1215	Basic Chemistry
1215 – 1230	<i>Break</i>
1230 – 1330	Clay Chemistry
1330 – 1420	Corrosion <i>Corrosion Overview • Drilling-Fluid Corrosive Agents • Packer-Fluid Treatments • Corrosivity of Completion/Wo Fluids • Corrosion Test Corrosion Troubleshooting • Product Information</i>
1420 – 1430	Recap
1430	<i>Lunch & End of Day One</i>

Day 2

0730 – 0830	Displacement <i>Displacement Overview • Displacement Procedure • Spacer Recommendations & Formulations</i>
0830 – 0930	Drill-In Fluids <i>Overview Drill-In Fluid Systems • Available DIF Systems</i>
0930 – 0945	<i>Break</i>
0945 – 1100	Field & Specialized Tests <i>Overview Field Testing • Field Tests Explained • Overview Specialized Tests • Specialized Tests Explained • Test Equipment, Procedures & Results</i>
1100 – 1215	Foam & Aerated Fluids <i>Overview • Air Drilling • Foam Drilling • Aerated Mud • Determining Hydrostatic Loss Caused by Gas-Cut Mud • Corrosion</i>
1215 – 1230	<i>Break</i>
1230 – 1420	Lost Circulation <i>Overview Lost Circulation • Formations in Which Circulation May Be Lost • Corrective Procedures & Formulations • Locating the Loss Zone</i>
1420 – 1430	Recap
1430	<i>Lunch & End of Day Two</i>

Day 3

0730 – 0830	Oil-Based Muds Overview • Oil-Based-Mud (OBM) Systems • Mud Management • Logging in OBM Special Applications • Product Usage Information
0830 – 0930	Rheology & Hydraulics Overview • Rheological Terms • Flow Regimes • Fluid Types • Rheological Models • Hydraulics Calculation Terms • Fluid Hydraulics Equations
0930 – 0945	Break
0945 – 1100	Solids Control Overview • Sources & Sizes of Solids • Mechanical Solids-Removal Equipment
1100 – 1215	Screen Devices
1215 – 1230	Break
1230 – 1330	Centrifugal Separation Devices Dilution • Efficiency of Solids-Control Equipment
1330 – 1420	Stuck Pipe Overview • Differential Sticking • Determining Depth to Stuck Zone • Packing off • Undergauge Hole • Keyseating • Freeing Stuck Pipe
1420 – 1430	Recap
1430	Lunch & End of Day Three

Day 4

0730 – 0900	Synthetic Based Muds (SBM) Classification of SBM Systems • SBM Systems Overview • Commercial SBM Systems • Logging Through SBM
0900 – 0915	Break
0915 – 1045	Tables-Charts-Calculations Overview • Formulas for Adjusting Drilling Fluid Properties • Formulas for Calculating Area & Volume • Dimensions • Chemical Properties • Physical Properties • Specific Materials • Metric & Standard Conversion Factors
1045 – 1215	Troubleshooting Completion/Workover Fluids • Foam/Aerated Drilling Fluids • Oil-Based Muds • Synthetic-Based Muds • Water-Based Muds
1215 – 1230	Break
1230 – 1330	Water-Based Drilling Fluids Water-Based Mud (WBM) Systems • High Performance Water-Based Muds (HPWM)
1330 – 1420	Well Cementing
1420 – 1430	Recap
1430	Lunch & End of Day Four

Day 5

0730 – 0900	HS&E Considerations (Health, Safety & Environmental)
0900 – 0915	Break
0915 – 1045	Well Control Overview • Kicks • Shut-In Procedures • Kill methods • Kick Control Problems

1045 – 1230	Cuttings, Cleaning & Disposal
1230 – 1245	Break
1245 – 1345	Drill Cuttings Evaluation Overview Drill Cuttings Evaluation • Cuttings Description Format • Clastic Rocks • Carbonate Rocks • Chemical Rocks • Carbonaceous Rocks • Igneous Rocks • Metamorphic Rocks • Sample Contamination
1345 – 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Jaryl Castillo, Tel: +974 6652 9196, Email: jaryl@haward.org