

COURSE OVERVIEW DE0867(SI7) Cased Hole and Production Log Evaluation

Course Title

Cased Hole and Production Log Evaluation

Course Date/Venue

Please refer to page 5

Course Reference

DE0867(SI7)

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

Water identification and fluid and fluid movement in both injection and producing wells are evaluated using spinners, tracers, pulsed neutron oxygen activation, temperature and noise survey. A variety of fluid identification devices are used to evaluate multiphase flow. These tools together are used to quantify the sources water, oil, gas production and are critical to the control of excessive water or other phases. Videos of and in vertical, deviated and horizontal flows are used to aid in visualization of the logging environment.

This course is designed to provide delegates with detailed and up-to-date overview of applied production logging and cased hole & production log evaluation. It covers oil and gas entries from flowmeter/fluid ID and temperature surveys, fluid movement in both injection and producing wells using spinners, tracers, pulsed neutron oxygen activation, temperature and noise survey as well as detecting movement inside/outside of pipe using oxygen activation.

The course will discuss heavy phase “fallback” in flows and select tools to minimize its effect including the various tools used to quantify the sources of water, oil gas production that are critical to the control of excessive water or other phases and the various problems of highly deviated/horizontal well.

Computation of fluid saturations from pulsed neutron (Sigma and C/O) measurements and evaluation of water, oil and gas entry profiles from flowmeter/fluid ID and temperature will also be discussed during the course.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a comprehensive knowledge on applied production logging and cased hole and production log evaluation
- Identify water as well as locate water, oil and gas entries from flowmeter/fluid ID and temperature surveys
- Evaluate fluid and fluid movement in both injection and producing wells using spinners, tracers, pulsed neutron oxygen activation, temperature and noise survey
- Detect water movement inside/outside of pipe using oxygen activation
- Identify fluid devices used to evaluate multiphase flow
- Describe heavy phase “fallback” in flows and select tools to minimize its effect
- Recognize various tools used to quantify the sources of water, oil gas production that are critical to the control of excessive water or other phases
- Enumerate the various problems of highly deviated/vertical well, how to log them and what tools to use
- List the various formation environments suitable for Sigma or C/O logs
- Compute fluid saturations from pulsed neutron (Sigma and C/O) measurements
- Determine whether zonal isolation is likely from all types of bond logs
- Evaluate water, oil and gas entry profiles from flowmeter/fluid ID and temperature

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive “Haward Smart Training Kit” (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of applied production logging, cased hole and production log evaluation for reservoir and production engineers, geologist, petrophysicists, log analysts and others involved in well surveillance.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

- [British Accreditation Council \(BAC\)](#)

Haward Technology is accredited by the **British Accreditation Council for Independent Further and Higher Education** as an **International Centre**.

Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

- [The International Accreditors for Continuing Education and Training \(IACET - USA\)](#)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units (CEUs)** in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Ron Guney, MSc, BSc, is a **Senior Geophysicist** with over **30 years** of **Offshore & Onshore** experience within the **Oil, Gas, Refinery** and **Petrochemical** industries. His expertise widely covers **Geophysics, Geophysical Technology, Borehole Geophysics, Seismology, Wave Propagation & Velocities, Seismic Acquisition Techniques, Seismic Data Processing, Vertical Seismic Profiling (VSP), Seismic Data Interpretation, Geomodelling, Prospect Generation-Delineation & Reservoir Modelling, Static Modelling, Prospect Generation through Seismic Structural & Stratigraphic Interpretation, Play Assessment & Prospect Evaluation, Prospect-Play Risk Assessment & Ranking, Resource & Reserve Estimations, Post Stack Seismic Attribute Analysis, Post Stack Seismic Inversion, Traveltime Inversion, Crossborehole Seismic Tomography, Seismic Sequence Stratigraphy, Program Coding (VSP & Cross-borehole Travel Time Inversion ART and SIRT), Post Drill Well Assessment, Field Development, Seismostratigraphy, Seismotectonics & Geodynamics & Modelling, Cartographic Information Systems (CIS), Geographic Information Systems (GIS), Geodesy & Topography, Geodesy, Map Projections & Coordinate Systems, Geological Maps (GM), Topographic & Geologic Maps, Cartography Assisted by Computer (CAC), Global Positional System (GPS), Petroleum Geology, Advanced Petrophysics, Petroleum Exploration, Petroleum Economics, Drilling, Core-to-Log Data Integration (SCAL), Basin Modelling & Total Petroleum System (TPS), Well Logging, Formation Evaluation, Well Testing & Data Interpretation, Pore Pressure Prediction and Oil & Gas Reserves Estimations. He is also an expert in 2D & 3D Seismic Interpretation Oil Risk Analysis, Landmark, Zmap+ Mapping Package, Petrel Schlumberger, Promax Processing System and 3D Seismic Data Acquisition. Currently, he is the Senior Geophysicist Consultant of Eastern Offshore Black Sea E&P Projects.**

During his long career, Mr. Guney has gained his practical and field experience through his various significant positions and dedication as the **Senior Geophysicist Consultant, Senior Geophysicist, Senior Project Geophysicist, Teaching Assistant, Lecturer, Instructor/Trainer** from numerous international companies such as the Eastprime Service Co., Emirates National Oil Company (ENOC) - Dragon Oil, OMV Petrol and Turkish Petroleum Corp, just to name a few.

Mr. Guney has a **Master's** degree in **Geology** from the **University of New Orleans, USA** and a **Bachelor's** degree in **Geophysics** from the Istanbul Technical University. Further, he is a **Certified Instructor/Trainer, a Certified Trainer/Assessor** by the **Institute of Leadership & Management (ILM)** and has **published books** and **scientific papers** such as Iterative Wavefront Reconstruction Technique (IWR), Mathematical Geophysics, Model Optimisation in Exploration Geophysics, Importance of Seismic Interpretation Systems and delivered various trainings, seminars, workshops, courses and conferences worldwide.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Date/Venue

Session(s)	Date	Venue
1	April 26-30, 2026	Pierre Lotti Meeting Room, Movenpick Hotel Istanbul Golden Horn, Istanbul, Turkey
2	June 21-25, 2026	Ruben Boardroom, The Rubens at The Palace, Buckingham Palace Road, London, United Kingdom
3	July 19-23, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
4	August 17-21, 2026	Salon Expo, NH Hotel Plaza de Armas, Seville, Spain
5	September 20-24, 2026	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
6	November 22-26, 2026	Meeting Room 4, Four Seasons Hotel Cairo at Nile Plaza, Corniche El Nil, Garden City, Cairo, Egypt
7	December 20-24, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
8	January 10-14, 2027	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
9	February 07-11, 2027	Meeting Plus 9, City Centre Rotana, Doha, Qatar
10	March 22-26, 2027	Ruben Boardroom, The Rubens at The Palace, Buckingham Palace Road, London, United Kingdom

Course Fee

Istanbul	US\$ 8,500 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
London	US\$ 8,800 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Doha	US\$ 8,500 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Seville	US\$ 8,800 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 8,000 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Cairo	US\$ 8,000 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 - 0800	<i>Registration & Coffee</i>
0800 - 0830	<i>Welcome & Introduction</i>
0830 - 0900	PRE-TEST
0900 - 0930	Water Identification
0930 - 0945	<i>Break</i>
0945 - 1100	<i>Locating Water, Oil & Gas Entries from Flowmeter/Fluid ID & Temperature Surveys</i>
1100 - 1230	<i>Evaluation of Fluid & Fluid Movement in Both Injection & Producing Wells</i>
1230 - 1245	<i>Break</i>
1245 - 1420	Spinners
1420 - 1430	Recap
1430	<i>Lunch & End of Day One</i>

Day 2

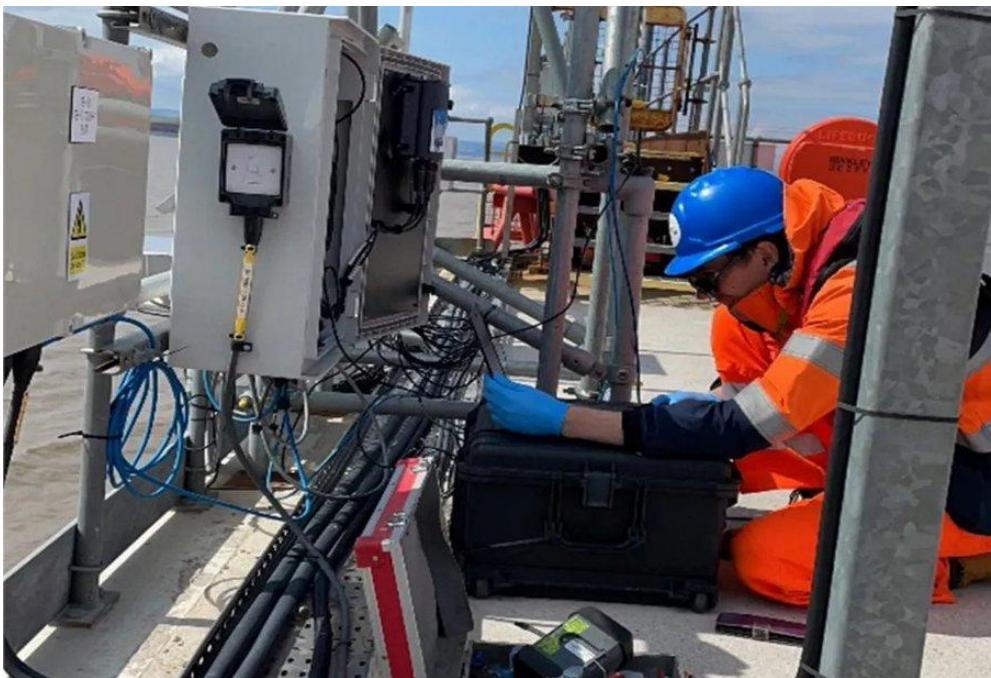
0730 - 0930	Tracers
0930 - 0945	<i>Break</i>
0945 - 1100	Pulsed Neutron
1100 - 1230	Oxygen Activation
1230 - 1245	<i>Break</i>
1245 - 1420	Temperature
1420 - 1430	Recap
1430	<i>Lunch & End of Day Two</i>

Day 3

0730 - 0930	Noise Survey
0930 - 0945	<i>Break</i>
0945 - 1100	<i>Detecting Water Movement Inside/Outside of Pipe Using Oxygen Activation</i>
1100 - 1230	<i>Fluid Identification Devices Used to Evaluate Multiphase Flow</i>
1230 - 1245	<i>Break</i>
1245 - 1420	<i>Heavy Phase Fallback in Flows & Selecting Tools to Minimize its Effect</i>
1420 - 1430	Recap
1430	<i>Lunch & End of Day Three</i>

Day 4

0730 - 0930	<i>Tools Used to Quantify the Sources of Water, Oil & Gas Production that Are Critical to the Control of Excessive Water or Other Phases</i>
0930 - 0945	<i>Break</i>
0945 - 1100	<i>Identifying Problems of Highly Deviated/Horizontal Well, How to Log Them & What Tools to Use</i>
1100 - 1230	<i>Identifying Formation Environments that are Suitable for Sigma or C/O Logs?</i>


1230 – 1245	Break
1245 - 1420	Computing Fluid Saturations from Pulsed Neutron (Sigma & C/O) Measurements
1420 – 1430	Recap
1430	Lunch & End of Day Four

Day 5

0730 – 0830	Determining Whether Zonal Isolation is Likely from All Types of Bond Logs
0830– 0930	Evaluating Water, Oil & Gas Entry Profiles from Flowmeter/Fluid ID & Temperature
0930 – 0945	Break
0945– 1100	Videos
1100 - 1245	Vertical, Deviated & Horizontal Flows are Used to Aid in Visualization of the Logging Environment
1245– 1300	Course Conclusion
1300– 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

