

COURSE OVERVIEW DE0900 Completion Design Practices and Perforation

Course Title

Completion Design Practices and Perforation

Course Date/Venue

Please see page 3

Course Reference

DE0900

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of completion design practices and perforation. It covers the basic well completion design, practices and strategies; developing a high level completion strategy for wells in a variety of situations; the packer selection and tubing forces; the selection of tubing, packers and completion flow control equipment; the wellheads/chokes/subsurface safety valves and flow control equipment; and the appraisal/designing a suitable flow barrier strategy and suitable intervention strategy.

Further, this course will also discuss the recommendations on installation and retrieval practices for tubing, packers, etc. in different well types; the corrosion and erosion inflow and tubing performance; the tubing design, packer setting, retrieval and material selection; the key design features for horizontal, multilateral, HPHT wells, etc; the deviated/multiple zone/subsea/horizontal/multilateral and HPHT completion considerations; the selection of an appropriate intervention strategy/equipment; and the key features/applicability of the main sand control, fracpack and well stimulation options.

During this interactive course, participants will learn the fluids chemicals and acidizing techniques, sandstone acidizing and carbonates acidizing; the well candidates for stimulation; the perforation process, factors affecting charge performance and perforating techniques; the types of guns, perforating damage pressure, control equipment and safe rig up; how to assess/specify concerns/remedial measures for formation damage/skin; the wireline/coiled tubing/snubbing operations; developing and outline overall strategy for a completion program; and the HSE related issues.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on completion design practices and perforation
- Develop a high level completion strategy for wells in a variety of situations as well as select tubing, packers, and completion flow control equipment
- Appraise/design a suitable flow barrier strategy and make recommendations on installation and retrieval practices for tubing, packers, etc.
- Identify key design features for horizontal, multilateral, HPHT wells, etc.
- Select an appropriate intervention strategy/equipment and identify key features/applicability of the main sand control, fracpack and well stimulation options
- Assess/specify concerns/remedial measures for formation damage/skin removal as well as develop and outline overall strategy for a completion program
- Discuss the basic well completion design, practices and strategies
- Develop a high level completion strategy for wells in a variety of situations
- Illustrate packer selection and tubing forces as well as selection of tubing, packers and completion flow control equipment
- Identify wellheads/chokes/subsurface safety valves and flow control equipment
- Appraise/design a suitable flow barrier strategy and suitable intervention strategy
- Recommend installation and retrieval practices for tubing, packers, etc. in different well types
- Recognize corrosion and erosion inflow and tubing performance and apply tubing design, packer setting, retrieval and materials selection
- Determine key design features for horizontal, multilateral, HPHT wells, etc. and deviated/multiple zone/subsea/vertical/multilateral and HPHT completion considerations
- Define the selection of an appropriate intervention strategy/equipment
- Identify the key features/applicability of the main sand control, fracpack and well stimulation options, fluids chemicals and acidizing techniques, sandstone acidizing and carbonates acidizing

- Carryout well candidates for stimulation and perforation process
- Discuss perforation process, factors affecting charge performance, perforating techniques, types of guns and perforating damage pressure
- Review control equipment and safe rig up and how to assess/specify concerns/remedial measures for formation damage/skin
- Identify the wireline/coiled tubing/snubbing operations, develop and outline overall strategy for a completion program and HSE related issues

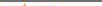
Exclusive Smart Training Kit - H-STK®

*Participants of this course will receive the exclusive “Haward Smart Training Kit” (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.*

Who Should Attend

This course provides an overview of all significant aspects and considerations of completion design practices and perforation for senior engineers, drilling, reservoir, well, production, completion and petroleum engineers & supervisors and geologists who need a practical understanding and appreciation of completion design.

Course Date/Venue


Session(s)	Date	Venue
1	April 26-30, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
2	June 21-25, 2026	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
3	August 30-September 03, 2026	Pierre Lotti Meeting Room, Movenpick Hotel Istanbul Golden Horn, Istanbul, Turkey
4	October 04-08, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
5	November 02-06, 2026	Ruben Boardroom, The Rubens at The Palace, Buckingham Palace Road, London, United Kingdom
6	December 27-31, 2026	Salon Expo, NH Hotel Plaza de Armas, Seville, Spain
7	January 31-February 04, 2027	Meeting Room 4, Four Seasons Hotel Cairo at Nile Plaza, Corniche El Nil, Garden City, Cairo, Egypt

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

The logo for the British Accreditation Council (BAC) features a blue square with a yellow border. Inside the square are four yellow five-pointed stars arranged in a diamond pattern. Below the stars, the letters 'BAC' are written in a large, bold, blue sans-serif font. Underneath 'BAC', the words 'BRITISH ACCREDITATION COUNCIL' are written in a smaller, all-caps, black sans-serif font.

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council for Independent Further and Higher Education** as an **International Centre**.

Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

- The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Fred Lazor is a **Senior Petrophysicist** and **Consultant** with over **30 years** of extensive experience in the **Oil & Gas** industry. His area of expertise includes **AVO, Inversion & Seismic Attributes, Production Geology, Well Composite, Construction Integrity & Completion, Special Core Analysis, Field Development Planning, Cased Hole Log Analysis** of the Spectral Saturation Tool, **Production Logs, Sector Cement Bond Logs and Multi-finger Calliper Logs**

using Warrior and other internal software analysis packages. Currently, he is working as a **Senior Petrophysicist** for **Shell Oil Company** in **Pittsburgh, USA**. Moreover, he is a **Trainer** in log analysis for petroleum engineers, geologists, petrophysicists and others involved in such activities.

During his career life, Mr. Lazor has lead various teams of **petroleum engineers, geologists, reservoir engineers and petrophysicists** to conduct **field studies in major oil companies** in the **USA, Europe, South East Asia and the Middle East**. One of his many achievements when he was a **Consultant Petrophysicist** at Kuwait Oil Company (**KOC**) was to lead a team of petrophysicists assigned to develop the **South Raqta Field** in to one of the **leading heavy oil producing reservoirs in the world**. Further, he has occupied numerous prime positions in multinational companies including **Vice President** and **Chief Petrophysicist** at the **National Petroleum Technology Company** in Saudi Arabia and **Chief Petrophysicist & Consultant** in **Shell Oil Company, Southwestern Energy Company, Schlumberger, TEXACO and Simon Geolithic**.

Mr. Lazor has a **Bachelor** degree in **Petroleum Engineering & Physics** from the **University of Texas, USA**. He is a **Fellow** of **SPE** and has various publications presented over the years and **circulated worldwide**. Further, he is a **Certified Instructor/Trainer**.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

Doha	US\$ 8,500 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 8,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Istanbul	US\$ 8,500 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
London	US\$ 8,800 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Seville	US\$ 8,800 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Cairo	US\$ 8,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 – 0800	<i>Registration & Coffee</i>
0800 – 0815	<i>Welcome & Introduction</i>
0815 – 0830	PRE-TEST
0830 – 0930	Basic Well Completion Design, Practices & Strategies
0930 – 0945	<i>Break</i>
0945 – 1030	<i>How to Develop a High Level Completion Strategy for Wells in a Variety of Situations</i>
1030 – 1130	Packer Selection & Tubing Forces
1130 - 1230	Selection of Tubing, Packers & Completion Flow Control Equipment
1230 – 1245	<i>Break</i>
1245 – 1420	Wellheads/Chokes/Subsurface Safety Valves & Flow Control Equipment
1420 – 1430	Recap
1430	<i>Lunch & End of Day One</i>

Day 2

0730 - 0930	How to Appraise/Design a Suitable Flow Barrier Strategy & Suitable Intervention Strategy
0930 - 0945	<i>Break</i>

0945 – 1100	Recommendations on Installation & Retrieval Practices for Tubing, Packers, Etc. in Different Well Types
1100 – 1230	Corrosion & Erosion Inflow & Tubing Performance
1230 – 1245	Break
1245 – 1330	Tubing Design & Packer Setting & Retrieval & Materials Selection
1330 – 1420	Key Design Features for Horizontal, Multilateral, HPHT Wells, etc.
1420 – 1430	Recap
1430	Lunch & End of Day Two

Day 3

0730 - 0930	Deviated/Multiple Zone/Subsea/Horizontal/Multilateral & HPHT Completion Considerations
0930 - 0945	Break
0945 – 1100	Selection of an Appropriate Intervention Strategy/Equipment
1100 – 1230	Key Features/Applicability of the Main Sand Control, Fracpack & Well Stimulation Options
1230 – 1245	Break
1245 – 1330	Fluids Chemicals & Acidizing Techniques
1330 – 1420	Sandstone Acidizing & Carbonates Acidizing
1420 – 1430	Recap
1430	Lunch & End of Day Three

Day 4

0730 - 0830	Well Candidates for Stimulation
0830 – 0930	Perforation Process
0930 - 0945	Break
0945 – 1100	Factors Affecting Charge Performance
1100 – 1230	Perforating Techniques
1230 – 1245	Break
1245 – 1330	Types of Guns
1330 - 1420	Perforating Damage Pressure
1420 – 1430	Recap
1430	Lunch & End of Day Four

Day 5

0730 – 0830	Control Equipment & Safe Rig Up
0830 - 0930	How to Assess/Specify Concerns/Remedial Measures for Formation Damage/Skin
0930 - 0945	Break
0945 – 1100	Wireline/Coiled Tubing/Snubbing Operations
1100 – 1230	Develop & Outline Overall Strategy for a Completion Program
1230 – 1245	Break
1245 - 1345	HSE Related Issues
1345 – 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

DE0900-04-26|Rev.11|27 January 2026

DE0900 - Page 7 of 8

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Jaryl Castillo, Tel: +974 6652 9196, Email: jaryl@haward.org