

COURSE OVERVIEW DE0979 **Pore Pressure & Well Control**

Course Title

Pore Pressure & Well Control

Course Date/Venue

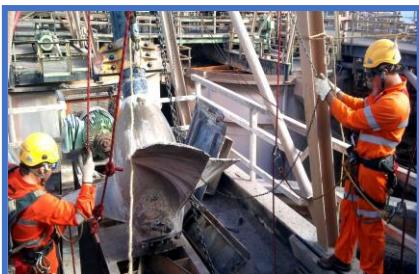
Please refer to page 3

Course Reference

DE0979

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs



Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

A predrill estimate of formation pore pressure is a key requirement for successful exploration and drilling. During the exploration phase, knowledge of the spatial distribution of formation pressures can be used to develop fluid migration models, to study the effectiveness of seals, and to rank prospects. During the drilling phase, a pre-drill pore pressure estimate allows the appropriate mud weight to be selected and the casing program to be optimized, thus enabling safe and economic drilling.

Accurate pore pressure prediction is vital for several aspects of well planning, such as casing and cementing design, as well as the prevention of potentially disastrous kicks, losses and blowouts. Furthermore, wellbore instability and associated events, such as pack-offs and stuck pipe, are regarded as the largest cause of non-productive time in expensive drilling operations. Thus, wellbore stability, pore pressure and fracture gradient analysis represents a key part in reducing drilling costs and optimizing drilling, both in the planning and operational stages of drilling a well.

This course will teach the participants the basics of formation pore pressure including techniques for predicting formation pressure, analyzing pore pressure data, detecting and collecting pressure data and understanding normal, over and under pressured environments. Participants will perform practical analysis during the course.

The course will cover the fundamental principles of pore pressure modeling and application to oil field problems. The basic concepts used in pore pressure prediction will be presented, and methods for estimating pore pressure using log and seismic data will be explained and discussed. The discussion will focus on deriving a calibrated pore pressure model from seismic velocities. This implies calibration with offset well data in order to derive a calibrated velocity-to-pore pressure transform.

The different data types used for optimal model calibration will be presented in the course. The rock physics basis underlying such transforms is discussed, and their application to pore pressure modelling is illustrated using several examples.

By understanding how the pre-drill pore pressure model is built, and what kind of calibration data is necessary, the course participant will get a sense of how to update and re-calibrate the model in real time while drilling. The following topics will be addressed: processes responsible for abnormal pressure, methods of pore pressure prediction and detection, data requirements and how to deal with data gaps, model calibration, advantages and disadvantages of seismic and resistivity based pore pressure prediction, real time updating and uncertainty analysis.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on pore pressure and well control
- Discuss the geological occurrence and processes responsible for abnormal pressure
- Define and discuss the importance of pore pressure in exploration and drilling as well as drilling problems related to pore pressure, state of stress in the earth and the concept of effective stress
- Illustrate pore pressure prediction and detection, seismic-based methods, resistivity-based methods, basin modeling approach and evaluation of the different methods
- Recognize the formation pore pressure fundamentals and apply pore pressure estimation techniques
- Differentiate pore pressure versus formation pressure and discuss the impact of pore pressure prediction on exploration and drilling success, pressure distribution concepts and fluid migration model
- Perform data auditing and identify data requirements, how to deal with data gaps and data types necessary for real time monitoring
- Estimate density and the calculation of vertical stress
- Predict pore pressure and fracture gradient as well as recognize loading, unloading, how it relates to different pore pressure mechanisms and fracture gradient
- Carryout formation integrity and leak-off tests for calibration of minimum horizontal stress as well as discuss the relation between pore pressure and fracture gradient and the influence of pore pressure on wellbore instability
- Employ advanced well control techniques and identify the impact of faults on pore pressure prediction, uncertainty, real-time updating and how real time updating reduces uncertainty ahead of the bit
- Describe sub-salt pore pressure prediction, impact of pore pressure on reservoir geomechanics, compaction and subsidence

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of pore pressure and well control for petrophysicists, senior engineers, geologists, geophysicists, drilling engineers, reservoir engineers, well log analysts, basin-model specialists, managers, and support staff who are involved in exploration, development and drilling.

Course Date/Venue

Session(s)	Date	Venue
1	May 17-21, 2026	Pierre Lotti Meeting Room, Movenpick Hotel Istanbul Golden Horn, Istanbul, Turkey
2	June 21-25, 2026	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
3	August 09-13, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
4	October 26-30, 2026	Salon Expo, NH Hotel Plaza de Armas, Seville, Spain
5	November 23-27, 2026	Ruben Boardroom, The Rubens at The Palace, Buckingham Palace Road, London, United Kingdom
6	December 13-17, 2026	Meeting Room 4, Four Seasons Hotel Cairo at Nile Plaza, Corniche El Nil, Garden City, Cairo, Egypt
7	January 03-07, 2027	Meeting Plus 9, City Centre Rotana, Doha, Qatar
8	January 24-28, 2027	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
9	February 22-26, 2027	Salon Expo, NH Hotel Plaza de Armas, Seville, Spain

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

- [British Accreditation Council \(BAC\)](#)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

- [The International Accreditors for Continuing Education and Training \(IACET - USA\)](#)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Ms. Diana Helmy, PgDip, MSc, BSc, is a **Senior Petroleum & Geologist** with extensive years of experience within the **Oil & Gas, Refinery and Petrochemical** industries. Her expertise widely covers in the areas of **Tubular & Pipe Handling, Tubular Strength, Casing & Tubing Design, Production/Injection Loads** for Casing Strings & Tubing, **Drilling Loads, Drilling & Production Thermal Loads, Well Architecture, Wellhead Integrity, Well Integrity & Artificial Lift, Well Integrity Management, Well Completion & Workover, Applied Drilling Practices, Horizontal Drilling, Petroleum Production, Resource & Reserve Evaluation, Reserves Estimation & Uncertainty, Methods for Aggregation of Reserves & Resources, Horizontal & Multilateral Wells, Well Completion & Stimulation, Artificial Lift System Selection & Design, Well Testing & Oil Well Performance, Well Test Design Analysis, Well Test Operations, Well Testing & Perforation, Directional Drilling, Formation Damage Evaluation & Preventive, Formation Damage Remediation, Drilling & Formation Damage, Simulation Program for The International Petroleum Business, Well Testing & Analysis, Horizontal & Multilateral Wells & Reservoir Concerns, Oil & Gas Analytics, Petrophysics & Reservoir Engineering, Subsurface Geology & Logging Interpretation, Petroleum Geology, Geophysics, Seismic Processing & Exploration, Seismic Interpretation, Sedimentology, Stratigraphy & Biostratigraphy, Petroleum Economy, Core Analysis, Well Logging Interpretation, Core Lab Analysis & SCAL, Sedimentary Rocks, Rock Types, Core & Ditch Cuttings Analysis, Clastic, Carbonate & Basement Rocks, Stratigraphic Sequences, Petrographically Analysis, Thin Section Analysis, Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), Cross-Section Tomography (CT), Conventional & Unconventional Analysis, Porosity & Permeability, Geological & Geophysical Model, Sedimentary Facies, Formation Damage Studies & Analysis, Rig Awareness, 2D&3D Seismic Data Processing, Static & Dynamic Correction, Noise Attenuation & Multiple Elimination Techniques, Velocity Analysis & Modeling and various software such as Petrel, OMEGA, LINUX, Kingdom and Vista. She is currently a **Senior Consultant** wherein she is responsible in different facets of **Petroleum & Process Engineering** from managing **asset integrity, well integrity process, pre-commissioning/commissioning** and **start up** onshore & offshore process facilities.**

During her career life, Ms. Diana worked as a **Reservoir Geologist, Seismic Engineer, Geology Instructor, Geoscience Instructor & Consultant** and **Petroleum Geology Researcher** from various international companies like the **Schlumberger, Corex Services for Petroleum Services, Petrolia Energy Supplies and Alexandria University**.

Ms. Diana has a **Postgraduate Diploma in Geophysics, Master's degree in Petroleum Geology and Geophysics** and a **Bachelor's degree in Geology**. Further, she is a **Certified Trainer/Assessor/Internal Verifier** by the **Institute of Leadership & Management (ILM)** and has delivered numerous trainings, courses, workshops, seminars and conferences internationally.

Course Fee

Dubai	US\$ 8,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
London	US\$ 8,800 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Seville	US\$ 8,800 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Cairo	US\$ 8,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Istanbul	US\$ 8,500 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Doha	US\$ 8,500 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 – 0800	Registration & Coffee
0800 – 0815	Welcome & Introduction
0815 – 0830	PRE-TEST
0830 – 0930	Geological Occurrence & Processes Responsible for Abnormal Pressure Disequilibrium Compaction • Fluid Expansion • Smectite/Illite Transformation • Hydrocarbon Generation
0930 – 0945	Break
0945 – 1100	Definitions & Importance of Pore Pressure in Exploration & Drilling
1100 – 1200	Drilling Problems Related to Pore Pressure
1200 - 1230	State of Stress in the Earth - Fundamentals, Measurements & Modeling
1230 – 1245	Break
1245 - 1315	The Concept of Effective Stress
1315 – 1400	Pore Pressure Prediction & Detection
1400 - 1420	Seismic-Based Methods
1420 – 1430	Recap
1430	Lunch & End of Day One

Day 2

0730 – 0830	Resistivity-Based Methods
0830 – 0930	Basin Modeling Approach
0930 – 0945	Break
0945 – 1100	Evaluation of the Different Methods
1100 – 1230	Formation Pore Pressure Fundamentals
1230 – 1245	Break

1245 - 1315	Pore Pressure Estimation Techniques
1315 - 1400	Pore Pressure versus Formation Pressure Differences • Case Studies
1400 - 1420	Impact of Pore Pressure Prediction on Exploration & Drilling Success
1420 - 1430	Recap
1430	<i>Lunch & End of Day Two</i>

Day 3

0730 - 0830	Pressure Distribution Concepts & Application
0830 - 0930	Fluid Migration Model Background & Development
0930 - 0945	<i>Break</i>
0945 - 1100	Pore Pressure Data Analysis
1100 - 1230	Data Audit, Data Requirements & How to deal with Data Gaps
1230 - 1245	<i>Break</i>
1245 - 1315	Overview of Data Types Necessary for Real Time Monitoring & Model Updating
1315 - 1400	Estimation of Stresses: Density & the Calculation of Vertical Stress
1400 - 1420	Vertical Stress Determination
1420 - 1430	Recap
1430	<i>Lunch & End of Day Three</i>

Day 4

0730 - 0830	Pore Pressure & Fracture Gradient - Modelling & Prediction
0830 - 0930	Loading & Unloading & How it Relates to Different Pore Pressure Mechanisms
0930 - 0945	<i>Break</i>
0945 - 1100	Fracture Gradient, Formation Integrity & Leak-Off Tests for Calibration of Minimum Horizontal Stress
1100 - 1230	Relation Between Pore Pressure & Fracture Gradient
1230 - 1245	<i>Break</i>
1245 - 1315	Determination of Minimum Horizontal Stress
1315 - 1420	Influence of Pore Pressure on Wellbore Instability
1420 - 1430	Recap
1430	<i>Lunch & End of Day Four</i>

Day 5

0730 - 0930	Advanced Well Control Techniques
0930 - 0945	<i>Break</i>
0945 - 1030	Advanced Methods: Impact of Faults on Pore Pressure Prediction
1030 - 1130	Uncertainty, Real-Time Updating and How Real Time Updating Reduces Uncertainty Ahead of the Bit
1130 - 1230	Sub-salt Pore Pressure Prediction
1230 - 1245	<i>Break</i>
1245 - 1300	Impact of Pore Pressure on Reservoir Geomechanics - Depletion and Stress Changes
1300 - 1345	Compaction and Subsidence
1345 - 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	<i>Lunch & End of Course</i>

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org