

COURSE OVERVIEW PE0221 Operation of Process Equipment

Fired Heaters, Air Coolers, Heat Exchangers, Pumps, Compressors, Crude Desalter, Pressure Vessels & Valves

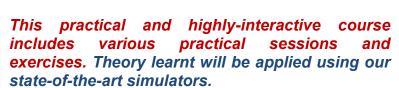
Course Title

Operation of Process Equipment: Fired Heaters, Coolers. Heat Exchangers, Compressors, Crude Desalter, Pressure Vessels & Valves

Course Date/Venue

October 05-09, 2025/Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

Course Reference PE0221


Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

The course is designed to provide delegates with a detailed and up-to-date overview on the operation of the hydrocarbon process equipment that includes fired heaters, air coolers, heat exchangers, pumps, compressors, crude desalter, pressure vessels and valves.

It covers the characteristics of crude oil and function of chemicals used in the process such as composition of petroleum, hydrocarbon properties, salt concentration and emulsions.

At the completion of the course, participants will be able to apply oil treating; dehydration and desalting; process and equipment operations; and employ the sequence of desalter plant start-up.

The course will also cover the different types and function of direct fired heaters; safety aspects; air coolers; heat exchangers; pumps; compressors; process vessels; valves; and troubleshooting of different equipment and processes.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply proper techniques and procedures on the operation of the hydrocarbon process equipment such as fired heaters, air coolers, heat exchangers, pumps, compressors, crude desalter, pressure vessels and valves
- Enumerate the characteristics of crude oil and identify the function of chemicals used in the process such as composition of petroleum, hydrocarbon properties, salt concentration and emulsions
- Discuss oil treating, dehydration and desalting including the process and equipment operations
- Employ the sequence of desalter plant start-up and identify the different types and function of direct fired heaters including the safety aspects
- Differentiate the various types of air coolers, heat exchangers, pumps and compressors
- Describe the types and functions of process vessels and valves including the troubleshooting of different equipment and processes

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all operational aspects of the hydrocarbon process equipment for engineers and other technical staff who are involved in the operation and troubleshooting of various process equipment including fired heaters, air coolers, heat exchangers, pumps, compressors, crude desalter, pressure vessels and valves. The course is also beneficial for design engineers and maintenance staff.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

In addition to the Course Manual, participants will receive an e-book "Operator's Guide to Rotating Equipment: An Introduction to Rotating Equipment Construction, Operating Principles, Troubleshooting and Best Practices", published by AuthorHouse.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, researchbased criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Mervyn Frampton is a Senior Process Engineer with over 30 years of industrial experience within the Oil & Gas, Refinery, Petrochemical and Utilities industries. His expertise lies extensively in the areas of Process Troubleshooting, Distillation Towers, Fundamentals of Distillation for Engineers, **Distillation** Operation and Troubleshooting, **Distillation** Troubleshooting, **Distillation** Technology, Vacuum **Distillation**, Distillation Column Operation & Control, Oil Movement Storage &

Troubleshooting, Process Equipment Design, Applied Process Engineering Elements, Plant Optimization, Revamping & Debottlenecking, Troubleshooting & Engineering Problem Solving, Process Plant Monitoring, Catalyst Selection & Production Optimization, Operations Abnormalities & Plant Upset, Process Plant Start-up & Commissioning, Clean Fuel Technology & Standards, Flare, Blowdown & Pressure Relief Systems, Oil & Gas Field Commissioning Techniques, Pressure Vessel Operation, Gas Processing, Chemical Engineering, Process Reactors Start-Up & Shutdown, Gasoline Blending for Refineries, Urea Manufacturing Process Technology, Continuous Catalytic Reformer (CCR), De-Sulfurization Technology, Operational & Troubleshooting Skills, Principles of Operations Planning, Rotating Equipment Maintenance & Troubleshooting, Hazardous Waste Management & Pollution Prevention, Heat Exchangers & Fired Heaters Operation & Troubleshooting, Energy Conservation Skills, Catalyst Technology, Refinery & Process Industry, Chemical Analysis, Process Plant, Commissioning & Start-Up, Alkylation, Hydrogenation, Dehydrogenation, Isomerization, Hydrocracking & De-Alkylation, Fluidized Catalytic Cracking, Catalytic Hydrodesulphuriser, Kerosene Hydrotreater, Thermal Cracker, Catalytic Reforming, Polymerization, Polyethylene, Polypropylene, Pilot Water Treatment Plant, Gas Cooling, Cooling Water Systems, Effluent Systems, Material Handling Systems, Gasifier, Gasification, Coal Feeder System, Sulphur Extraction Plant, Crude Distillation Unit, Acid Plant Revamp and Crude Pumping. Further, he is also well-versed in HSE Leadership, Project and Programme Management, Project Coordination, Project Cost & Schedule Monitoring, Control & Analysis, Team Building, Relationship Management, Quality Management, Performance Reporting, Project Change Control, Commercial Awareness and Risk Management.

During his career life, Mr. Frampton held significant positions as the Site Engineering Senior Project Manager, Process Engineering Manager, Engineering Manager, Construction Manager, Site Manager, Area Manager, Procurement Manager, Factory Manager, Technical Services Manager, Senior Project Engineer, Process Engineer, Project Engineer, Assistant Project Manager, Handover Coordinator and Engineering Coordinator from various international companies such as the Fluor Daniel, KBR South Africa, ESKOM, MEGAWATT PARK, CHEMEPIC, PDPS, CAKASA, Worley Parsons, Lurgi South Africa, Sasol, Foster Wheeler, Bosch & Associates, BCG Engineering Contractors, Fina Refinery, Sapref Refinery, Secunda Engine Refinery just to name a few.

Mr. Frampton has a Bachelor's degree in Industrial Chemistry from The City University in London. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Trainer/Assessor by the Institute of Leadership & Management (ILM) and has delivered numerous trainings, courses, workshops, conferences and seminars internationally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 05th of October 2025

Duy 1.	Carrady, 60 Or Colober 2020
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Characteristics of Crude Oil
	Composition of Petroleum • Hydrocarbon Gases Properties
0930 - 0945	Break
0945 – 1100	Characteristics of Crude Oil (cont'd)
	Salts Concentration • Emulsions • Function of Chemicals Used in the
	Process
1100 – 1230	Oil Treating, Dehydration & Desalting
	Emulsion Formation & Breaking • Vertical & Horizontal Theater Operation
	• Electrostatic Theatre Design/Operation • The Desalting
	Process/Equipment • Emulsion Treating
1230 - 1245	Break
1245 – 1420	Oil Treating, Dehydration & Desalting (cont'd)
	Separators - Free Water Knockout • Hetear Theatres - Other Treating
	Methods • Chemical – Electrical – Crude Oil Coolers (Heat Exchangers) •
	Control Valves Principles • Pumps Operation • Air Compressor Operation
1420 – 1430	Recap
1430	Lunch & End of Day One

Day 2: Monday, 06th of October 2025

0730 - 0930	Sequence of Desalter Plant Start-up
0930 - 0945	Break
0945 - 1100	Sequence of Desalter Plant Start-up (cont'd)
1100 – 1230	Direct-Fired Heaters
	Design Considerations – Process & Combustion
1230 - 1245	Break
1245 – 1420	Direct-Fired Heaters (cont'd)
	Control System
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3: Tuesday, 07th of October 2025

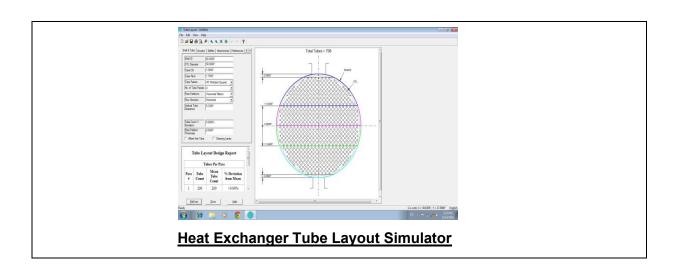
0730 - 0930	<i>Air Coolers Types – Forced and Induced Air ● Key Operational Considerations</i>
0930 - 0945	Break
0945 – 1100	Air Coolers (cont'd)
	Air vs Water Cooling • Troubleshooting
1100 – 1230	Heat Exchangers
	Types ● Shell-and-Tube
1230 - 1245	Break
1245 – 1420	Heat Exchangers (cont'd)
	Heat Transfer Relation
1420 - 1430	Recap
1430	Lunch & End of Day Three

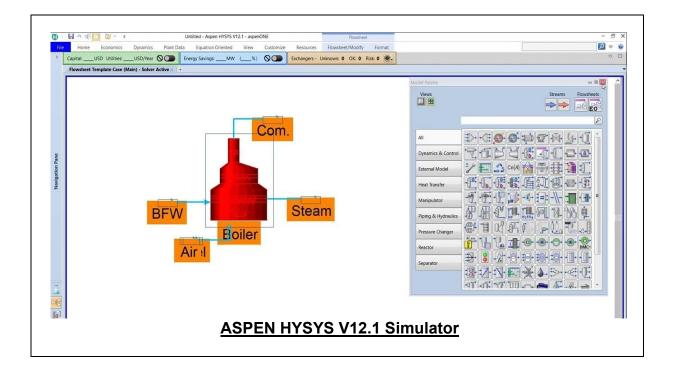
Day 4: Wednesday, 08th of October 2025

Day 4.	Wednesday, 00 Of October 2025
0730 - 0930	Pumps Development of Static and Dynamic Head in the Operating Volume of Pumps for Efficiency and Control Operation ● The Affinity Laws as Tools for Efficient Operation ● Pump Auxiliaries
0930 - 0945	Break
0945 - 1100	Pumps (cont'd) Wear Components • Canned Motor and Magnetic Drive Pumps • High Speed/Low Flow Pumps • Servicing and Condition Monitoring
1100 - 1230	Compressors Types, Styles and Configurations of Centrifugal and Axial Compressors Construction Features Mode of Operation
1230 – 1245	Break
1245 - 1420	Compressors (cont'd) Compressor Auxiliaries and Support Systems • Analyse Operating Curves for Surge, Stall and Choke • Define Appropriate Equipment for Safe Operation
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5: Thursday, 09th of October 2025

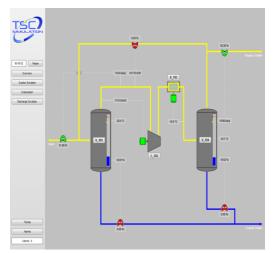
0730 - 0930	Process Vessels Types and Functions ● Safety Aspects
0930 - 0945	Break
0945 – 1100	Valves Valve Theory ● Valve Types ● Applications ● Function ● Operation ● Troubleshooting
1100 – 1230	Troubleshooting of Different Equipment & Processes
1230 – 1245	Break
1245 – 1345	Troubleshooting of Different Equipment & Processes (cont'd)
1345 – 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

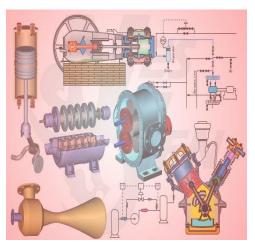




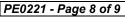
Simulator (Hands-on Practical Sessions)

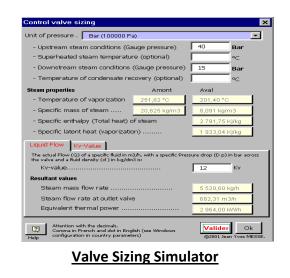
Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulators "Heat Exchanger Tube Layout", "ASPEN HYSYS V12.1", "Centrifugal Pumps and Troubleshooting Guide 3.0", "SIM 3300 Centrifugal Compressor", "CBT on Compressors", "Valve Sizing Simulator", "Valve Simulator 3.0", "Valvestar 7.2 Simulator" and "PRV2SIZE Simulator".

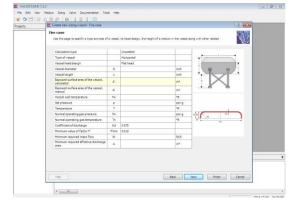


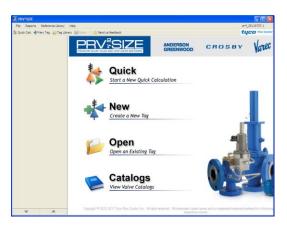


Centrifugal Pumps and Troubleshooting Guide


CBT on Compressors

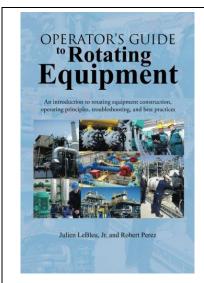






VALVE TYPES

Valve Simulator 3.0


Valvestar 7.2 Simulator

PRV²SIZE Simulator

Book(s)

As part of the course kit, the following e-book will be given to all participants:

Title : Operator's Guide to Rotating Equipment:

> An Introduction to Rotating Equipment Construction, Operating Principles, Troubleshooting and Best Practices

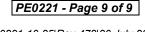
ISBN : 978-1-49690-868-1

Authors : Julien LeBleu

Robert Perez

Publisher: AuthorHouse

Course Coordinator


Mari Nakintu, Tel: +971 2 30 91 714, Email: mari@haward.org

