

COURSE OVERVIEW PE0660-4D Rules of Thumb in the Design of Process Equipment

Course Title

Rules of Thumb in the Design of Process Equipment

Course Date/Venue

December 16-19, 2024/Ajman Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference PE0660-4D

Course Duration/Credits Four days/2.4 CEUs/24 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

Chemical Engineers are at the forefront of creating and developing processes and products. They are operating at the leading edge of technology and they are the minds and backbone of the process industry. All engineers, in general, employ mathematics, physics and the engineering art to overcome technical problems in a safe and economical fashion. Yet, it is the chemical engineer alone that draws upon the vast and powerful science of chemistry to solve a wide range of problems. The strong technical and social ties that bind chemistry and chemical engineering are unique in the fields of science and technology. The breadth of scientific and technical knowledge inherent in the profession has caused some to describe the chemical engineer as the "Universal Engineer". Despite a title that suggests a profession composed of narrow specialists, chemical engineers are actually extremely versatile and able to handle a wide range of technical problems.

The rule of thumb is defined as "a rough guestimate measure, practice or experience, as distinct from theory". Engineers need such rules of thumb to guide decisions, set goals and check results. Some believe that providing a collection of rules of thumb is dangerous because engineers might forsake the fundamentals and place too much emphasis on order-of-magnitude estimates. However, it was found for problem solving in industry, for design, for process improvement and for troubleshooting that rule of thumb are not dangerous but they are very essential.

PE0660-4D - Page 1 of 8

This course is designed to provide chemical and process engineers with a lot of common-sense techniques, shortcuts and calculations to quickly and accurately solve day-to-day design, operations and equipment problems. The practical tips, handy formulas, correlations, curves, charts, tables, and shortcut methods presented in this course will save engineers valuable time and effort. This course covers rules of thumb applicable to Fluid flow, Heat exchangers, Fractionators, Absorbers, Pumps, Drivers, Separators/accumulators, Boilers & Cooling towers.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply the rules of thumb in the design of process equipment
- Employ the rules of thumb for heat exchangers and command the TEMA standards and selection guides
- Perform rules of thumb for fractionators & absorbers and explain their design, control schemes & optimization techniques
- Use the rules of thumb for pumps including affinity laws, horsepower, efficiency minimum flow & suction system and recognize the various construction materials used in pumps
- Implement the rules of thumb for drivers and determine their ranges of application, efficiency & service factors
- Apply rules of thumb for separators/accumulators such as liquid & vapour residence time, calculation methods, pressure drop, vessel thickness, gas scrubbers & reflux drums and employ the general vessel design tips
- Carryout the rules of thumb for boilers and acquire knowledge on thermal efficiency, stack gas enthalpy & quantity, steam drum stability, blowdown control, caustic embrittlement, etc
- Perform rules of thumb for cooling towers and analyze its system balances, temperature data & transfer units

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of rules of thumb in the design of process equipment for engineers, supervisors, plant and shift foremen and other technical staff.

PE0660-4D - Page 2 of 8

Exam Eligibility & Structure

 Exam Candidates shall have the following minimum prerequisites: -Participants must have a good understanding of the chemical engineering basic principles of operations and process equipment.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 2.4 CEUs (Continuing Education Units) or 24 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

** BAC

British Accreditation Council (BAC)

AWS

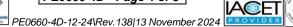
Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

PE0660-4D - Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Mervyn Frampton is a Senior Process Engineer with over 30 years of industrial experience within the Oil & Gas, Refinery, Petrochemical and Utilities industries. His expertise lies extensively in the areas of Process Troubleshooting, Distillation Towers, Fundamentals of Distillation for Engineers, Distillation Operation and Troubleshooting, Advanced Distillation Troubleshooting, Distillation Technology, Vacuum Distillation, Distillation Column Operation & Control, Oil Movement Storage & Troubleshooting,


Process Equipment Design, Applied Process Engineering Elements, Process Plant Optimization, Revamping & Debottlenecking, Process Plant Troubleshooting & Engineering Problem Solving, Process Plant Monitoring, Catalyst Selection & Production Optimization, Operations Abnormalities & Plant Upset, Process Plant Start-up & Commissioning, Clean Fuel Technology & Standards, Flare, Blowdown & Pressure Relief Systems, Oil & Gas Field Commissioning Techniques, Pressure Vessel Operation, Gas Processing, Chemical Engineering, Process Reactors Start-Up & Shutdown, Gasoline Blending for Refineries, Urea Manufacturing Process Technology, Continuous Catalytic Reformer (CCR), De-Sulfurization Technology, Advanced Operational & Troubleshooting Principles of Operations Planning, Rotating Equipment Maintenance & Skills. Troubleshooting, Hazardous Waste Management & Pollution Prevention, Heat Exchangers & Fired Heaters Operation & Troubleshooting, Energy Conservation Skills, Catalyst Technology, Refinery & Process Industry, Chemical Analysis, Process Plant, Commissioning & Start-Up, Alkylation, Hydrogenation, Dehydrogenation, Isomerization, Hydrocracking & De-Alkylation, Fluidized Catalytic Cracking, Catalytic Hydrodesulphuriser, Kerosene Hydrotreater, Thermal Cracker, Catalytic Reforming, Polymerization, Polyethylene, Polypropylene, Pilot Water Treatment Plant, Gas Cooling, Cooling Water Systems, Effluent Systems, Material Handling Systems, Gasifier, Gasification, Coal Feeder System, Sulphur Extraction Plant, Crude Distillation Unit, Acid Plant Revamp and Crude Pumping. Further, he is also wellversed in HSE Leadership, Project and Programme Management, Project Coordination, Project Cost & Schedule Monitoring, Control & Analysis, Team Building, Relationship Management, Quality Management, Performance Reporting, Project Change Control, Commercial Awareness and Risk Management.

During his career life, Mr. Frampton held significant positions as the Site Engineering Manager, Senior Project Manager, Process Engineering Manager, Project Engineering Manager, Construction Manager, Site Manager, Area Manager, Procurement Manager, Factory Manager, Technical Services Manager, Senior Project Engineer, Process Engineer, Project Engineer, Assistant Project Manager, Handover Coordinator and Engineering Coordinator from various international companies such as the Fluor Daniel, KBR South Africa, ESKOM, MEGAWATT PARK, CHEMEPIC, PDPS, CAKASA, Worley Parsons, Lurgi South Africa, Sasol, Foster Wheeler, Bosch & Associates, BCG Engineering Contractors, Fina Refinery, Sapref Refinery, Secunda Engine Refinery just to name a few.

Mr. Frampton has a **Bachelor's degree** in **Industrial Chemistry** from **The City University** in London. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Trainer/Assessor by the Institute of Leadership & Management (ILM) and has delivered numerous trainings, courses, workshops, conferences and seminars internationally.

PE0660-4D - Page 4 of 8

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 4,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Monday, 16 th of December 2024
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0900	Introduction
	Optimum Design • Rule of Thumb - Definition
0900 - 0930	Fluid Flow
	Energy Relationships • Velocity Head • Piping Pressure Drop • Equivalent
	Length • Recommended Velocities • Two-phase Flow
0930 - 1000	Fluid Flow (cont'd)
	Compressible Flow-Short Pipeline • Compressible Flow-Long Pipelines • Sonic
	Velocity • Metering • Control Valves • Safety Relief Valves
1000 - 1015	Break
1015 - 1230	Heat Exchangers
	TEMA • Selection Guides • Pressure Drop Shell and Tube • Temperature
	Difference • Shell Diameter • Shell Velocity Maximum • Nozzle Velocity
	Maximum • Heat Transfer Coefficients
1230 - 1245	Break

PE0660-4D - Page 5 of 8

1245 - 1420	<i>Heat Exchangers (cont'd)</i> Fouling Resistances • Metal Resistances • Vacuum Condensers • Air-Cooled Heat Exchangers: Forced vs Induced Draft • Air-Cooled Heat Exchangers: Pressure Drop Air Side • Air-Cooled Heat Exchangers: Rough Rating • Air- Cooled Heat Exchangers: Temperature Control • Miscellaneous Rules of Thumb
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

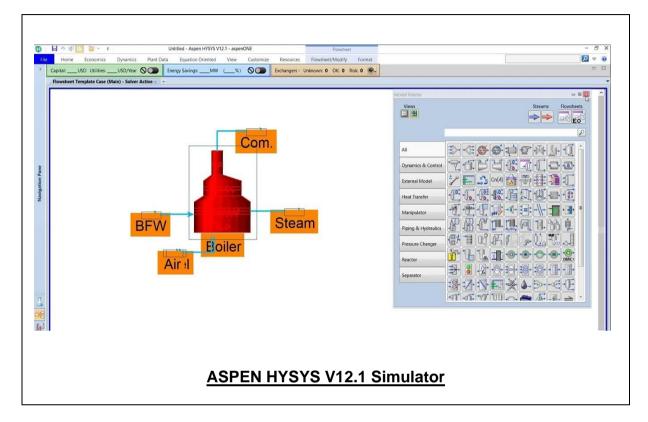
Day 2:	Tuesday, 17 th of December 2024
0730 – 0930	Fractionators Relative Volatility • Minimum Reflux • Minimum Stages • Actual Reflux and Actual Theoretical Stages • Reflux to Feed Ratio • Actual Trays • Graphical Methods • Tray Efficiency • Diameter of Bubble Cap Trays • Diameter of Sieve/Valve Trays (F Factor)
0930 - 0945	Break
0945 - 1100	<i>Fractionators (cont'd)</i> Diameter of Sieve/Valve Trays (Smith) • Diameter of Sieve/Valve Trays (Lieberman) • Diameter of Ballast Trays • Diameter of Fractionators • General • Control Schemes • Optimization Techniques • Reboilers • Packed Columns
1100 – 1230	Absorbers Hydrocarbon Absorbers Design • Hydrocarbon Absorbers
1230 - 1245	Break
1245 - 1420	<i>Absorbers (cont'd)</i> <i>Optimization • Inorganic type</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3:	Wednesday, 18 th of December 2024
0730 - 0930	Pumps Affinity Laws • Horsepower • Efficiency • Minimum Flow • General Suction System
0930 - 0945	Break
0945 – 1100	Pumps (cont'd) Suction System NPSH Available • Suction System NPSH For Studies • Suction System NPSH with Dissolved Gas • Larger Impeller • Construction Materials
1100 - 1230	Drivers Motors: Efficiency • Motors: Starter Sizes • Motors: Service Factor • Motors: Useful Equations • Motors: Relative Costs • Motors: Overloading
1230 - 1245	Break

AWS

1245 - 1420	Drivers (cont'd)
	Steam Turbines: Steam Rate • Steam Turbines: Efficiency • Gas Turbines: Fuel
	Rates • Gas Engines: Fuel Rates • Gas Expanders: Available Energy
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4:	Thursday, 19 th of December 2024
	Separators/Accumulators
0730 - 0930	Liquid Residence Time • Vapor Residence Time • Vapor/Liquid Calculation
	Method • Estimating Equilibria • Liquid/Liquid Calculation Method
0930 - 0945	Break
0945 – 1100	Separators/Accumulators (cont'd)
	Pressure Drop • Vessel Thickness • Gas Scrubbers • Reflux Drums • General
	Vessel Design Tips
	Boilers
	Power Plants • Controls • Thermal Efficiency • Stack Gas Enthalpy • Stack
1100 – 1215	Gas Quantity • Steam Drum Stability • Deaerator Venting • Water Alkalinity
	Blowdown Control • Impurities in Water • Conductivity Versus Dissolved
	Solids • Silica in Steam • Caustic Embrittlement • Waste Heat
1215 – 1230	Break
	Cooling Towers
1230 – 1300	System Balances • Temperature Data • Performance • Performance Estimate: A
	Case History, Transfer Units
1300 - 1345	Q&ADiscussion
	Course Conclusion
1345 – 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course


AWS

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "ASPEN HYSYS" simulator.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

PE0660-4D - Page 8 of 8

AWS

