

COURSE OVERVIEW EE0060 LV/MV/HV Circuit Breakers and Switchgear

Specification, Design, Operation, Inspection, Testing, Maintenance, Repair & Troubleshooting

Course Title

LV/MV/HV Circuit **Breakers** and Specification. Switchgear: Design, Operation, Inspection, Testing, Maintenance, Repair & Troubleshooting

Course Date/Venue

February 09-13, 2025/Zafaran Meeting Room, The Tower Plaza Hotel, Dubai, UAE

Course Reference

EE0060

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to update participants with the latest development of Circuit Breakers and to present some of the more common and updated aspects of low, medium and high voltage switchgear maintenance. It must be understood that there is an incredible variety of equipment used on low, medium and high voltage switchgear today. Switchgears play an important role in the protection, distribution and control of electrical power in manufacturing or power plant and in a utility distribution system. Negligent maintenance practices can lead to power system inefficiency and loss of system reliability.

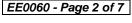
An older plant may have switchgear that was built in the forties in the older areas and modern switchgear in other areas as the plant was upgraded. This course will present maintenance problems to the maintenance manager and technician. Newer plants will probably have modern equipment of a limited variety and manufacture. It is these similarities that will be covered in the course.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Specify, design, operate, inspect, test, maintain, repair and troubleshoot circuit breakers and switchgears
- Apply an in-depth knowledge and skills on LV/MV/HV circuit breakers and switchgears
- Describe the switchgear details such as ratings, degree of protection, service conditions and ancillary equipment
- Explain switchgear asset management including CBM and RCM process, tripping devices, maintenance and testing
- Apply load and fault calculation to decide the task of protection system and the operating conditions of power system
- Explain circuit breaker control circuits, types and application of protective relays, structure of control circuits and the use and application of current and voltage transformers
- Discuss circuit breaker characteristics in relation to protection control circuits, selectivity, sensitivity and speed of the control circuits
- Recognize the value of earthing system to protection control circuits and the power system protection as well as fault clearance and power system redundancy through control system application
- Identify the various switchgear diagnostic techniques and employ the different types of substation circuit breaker techniques and determine the switchgear vital equipment including batteries condition and monitoring, relay applications for basic and complex busbar arrangements and zone selection logic
- Employ the substation maintenance techniques and discuss their description, structures, features and functions
- Apply the switchgear maintenance practices and improve maintenance and repair procedures
- Carryout maintenance work orders including their process development, procedures and problems encountered
- Introduce computerized maintenance management systems (CMMS) and recognize its importance in circuit breakers design, inspection, maintenance, repair and troubleshooting

Exclusive Smart Training Kit - H-STK®



Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of Circuit Breakers and Switchgears for engineers and other technical staff who need a sound understanding of Low, Medium and High Voltage Switchgear and Circuit Breaker specification, design, operation, inspection, testing, maintenance, troubleshooting.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

<u>USA International Association for Continuing Education and Training</u> (IACET)

Haward Technology is an Authorized Training Provider by the International Association for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, Virginia 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 1-2013 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 1-2013 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Association for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Pan Marave, PE, MSc, BEng, is a Senior Electrical & **Instrumentation Engineer** with over **40 years** of extensive experience in Oil, Gas, Petrochemical, Refinery & Power industries. His includes Circuit Breaker. HV expertise Switchgear Maintenance, HV/LV Electrical Authorisation, Basic Electricity, Electrical & Special Hazards, Personnel Protection, HV/LV Equipment, Motor Controllers, Electrical Switching Practices,

Emergency Planning, Safety Management, Safety Instrumented Systems (SIS), Safety Integrity Level (SIL), Emergency Shutdown (ESD); DCS, SCADA & PLC; Measurement (Flow, Temperature, Pressure); Process Analyzers & Analytical Instrumentation; Process Control, Instrumentation & Safeguarding; Process Controller, Control Loop & Valve Tuning; Industrial Distribution Systems; Industrial Control & Control Systems, Power Systems Protection & Relaying; Earthing, Bonding, Grounding, Lightning & Surge Protection; Electric Power Substation & Systems; Electrical Engineering Principles; Motor Control Circuit; Electrical Fault Analysis; Electrical Networks & Distribution Cables; Circuit Breakers, Switchgears, Transformers, Hazardous Areas Classification and Detailed Engineering Drawings, Codes & Standards. Furthermore, he is also wellversed in Microprocessors Structure, Lead Auditor (ISO 9000:2000), ISO 9002, Quality Assurance, and Projects & Contracts Management.

Presently, Mr. Marave is the Technical Advisor of Chamber of Industry & **Commerce** in Greece. Prior to this, he gained his thorough practical experience through several positions as the Technical Instructor, Engineering Manager, Electronics & Instruments Head. Electrical. Electronics & Instruments Maintenance Superintendent, Assistant General Technical Manager and Engineering Supervisor of various international companies such as the Alumil Mylonas, Athens Papermill, Astropol and the Science Technical Education.

Mr. Marave is a Registered Professional Engineer and has Master's and Bachelor's degrees in Electrical Engineering from the Polytechnic Institute of New York and Pratt Institute of New York (USA) respectively. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and an active member of the Technical Chamber and the Institute of Electrical and Electronics Engineer (IEEE) in Greece. He has presented and delivered numerous international courses, conferences, trainings and workshops worldwide.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Sunday, 09th of February 2025 Day 1:

Sunday, 09 Of February 2025
Registration & Coffee
Welcome & Introduction
PRE-TEST
Introduction
Voltage Convention • Fundamentals of Circuit Breakers • Types of
Breakers, Construction • Ratings, Tripping Characteristics
Break
Switchgear in a Network Context
Single Line • Utilization
Switchgear in Historical Perspective
Oil Circuit Breakers • Air Blast CB • SF6 and Vacuum CB • Operating
Mechanisms
Break
Switchgear Details
Ratings Ur, Ik, Ip, Va • Degree of Protection • Service Conditions •
Ancillary Equipment
Recap
Lunch & End of Day One

Monday. 10th of February 2025 Dav 2:

	Switchgear Asset Management
0730 - 0930	Equipment Register • CBM and RCM Process • Switchgear Diagnostic
	Techniques • Tripping Devices & Maintenance & Testing
0930 - 0945	Break
	Circuit Breakers Control Circuits
0045 1100	Philosophy, Types & Application of Protective Relays • Control System
0945 – 1100	Structure, Instrument Transformers • Current & Voltage Transformers •
	Panels, Signalling, Interlocking
	Circuit Breakers Control Circuits (cont'd)
1100 – 1230	Typical Connection Diagrams • Primary & Back-up Relaying • Fault
1100 - 1230	Calculation • System Earthing • Circuit Breakers Characteristics •
	Selectivity, Sensitivity, Speed • Reliability
1230 - 1245	Break

	Circuit Breakers Control Circuits (cont'd)
1245 - 1420	Evaluation of Protection Relaying • Setting of Protection • Fault
	Clearance • Redundant Control Circuits
1420 - 1430	Recap
1430	Lunch & End of Day Two

Tuesday 11th of February 2025 Day 3:

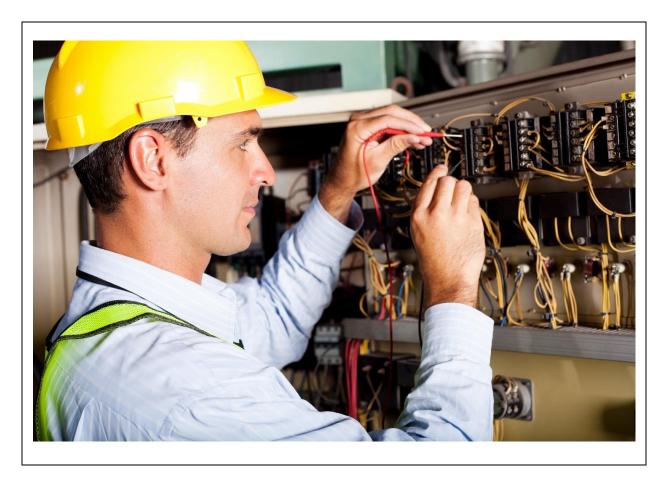
Day 3.	ruesday 11" of February 2025
0730 - 0930	Case Study
0730 - 0330	Circuit Breaker Settings • Selectivity, Sensitivity, Speed
0930 - 0945	Break
0945 - 1100	Circuit Breaker Diagnostic Techniques
0943 - 1100	Diagnostic Techniques
1100 - 1230	Switchgear Vital Equipments
1100 - 1230	Batteries Condition and Monitoring • Discussions
1230 – 1245	Break
	LV/MV/HV Substation Bus Arrangement, Incoming and Outgoing
	Circuits
1245 - 1420	Automatic Switching During Normal or Abnormal Conditions, Bus
	Protection & Circuit Breaker System • Bus Differential & Breaker Failure
	Relay, Zone Selection Logic & CT Requirements
1420 - 1430	Recap
1430	Lunch & End of Day Three

Wednesday 12th of February 2025 Day 4:

Day 4.	Wednesday 12 Of February 2025
	Substation Maintenance Techniques
0730 - 0930	Description • Structures • Fuses, Arresters, Switches • Substation
0730 - 0330	Compound • Switchgear Maintenance Practices • Metal Clad Switchgear
	Maintenance Details
0930 - 0945	Break
0945 – 1100	Substation Maintenance Techniques (cont'd)
0943 - 1100	Metal Clad Switchgear Maintenance Details • Discussions
1100 – 1230	Substation Maintenance Techniques (cont'd)
1100 - 1230	Maintenance & Repair Fundamentals
1230 - 1245	Break
1245 – 1420	Substation Maintenance Techniques (cont'd)
1243 - 1420	Maintenance & Repair Procedures
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5: Thursday 13th of February 2025

_	,	
	0730 – 0930	Maintenance Work Orders
	0750 0550	Maintenance & Repair Procedures (cont'd)
	0930 - 0945	Break
	0945 – 1100	Maintenance Work Orders (cont'd)
	0943 - 1100	Process Development • Procedures
	1100 – 1230	Maintenance Work Orders (cont'd)
	1100 - 1230	Problems Encounters • Samples, Discussions
	1230 - 1245	Break



1245 - 1345	Fundamentals of Computerized Maintenance (CMMS)
1345 - 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

<u>Course Coordinator</u>
Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>

