

COURSE OVERVIEW PE0114 Process Plant Troubleshooting & Engineering Problem Solving

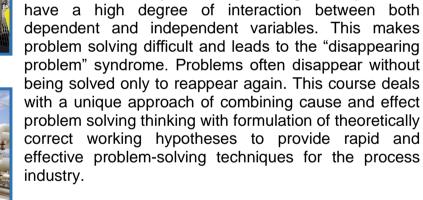
Course Title

Process Plant Troubleshooting & Engineering Problem Solving

Course Date/Venue

November 24-28, 2024/Tamra Meeting Room, Al Bandar Rotana, Dubai Creek, Dubai, UAE

Course Reference PE0114


Course Duration/Credits
Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-theart simulators.

Modern industrial processes are large, complex and

Problem Solving in the process industry is often characterized by either inference based on cause-and-effect relationships or highly involved theoretical approaches. Neither of these approaches is satisfactory in a modern manufacturing environment. The cause/effect inference approach while being expedient often results in solutions that do not eliminate the problem, but in fact make the problem worse. The more sophisticated highly theoretical approach is rarely expedient enough to satisfy time constraints in a production facility. Thus, one of the most frequent industry requests to the academic world is "give us people that can solve problems".

This course presents an approach that emphasizes the classical problem-solving approach (defining the sequence of events) with the addition of the steps of formulating a theoretically correct working hypothesis, providing a means to test the hypothesis, and providing a foolproof means to eliminate the problem. The initial part of the course focuses on defining the problem that must be solved and obtaining the location, time and quantity-based specifications of the problem. The initial part of the course is suitable for all engineering disciplines as well as non-engineers.

The second part of the course deals with the utilization of chemical engineering fundamentals to develop a technically correct working hypothesis that is the key to successful problem solving. The primary emphasis is on pragmatic calculation techniques that are theoretically correct. These techniques have been developed by the course Instructor in 30+ years of industrial experience. Using these techniques, theoretically correct working hypotheses can be developed in an expedient fashion.

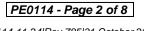
The course includes both sample problems as well as problem working sessions to allow the participants to develop confidence with the approach.

The attendees are encouraged to bring real problems that they are working to use in discussions on the last day of the course. These problems should be of a non-confidential nature that can be discussed without violation of any confidentiality restrictions.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on process plant troubleshooting and engineering problem solving
- Enumerate the components of plant problem solving as well as the various troubleshooting techniques on engineering problem solving by familiarizing the potential sources
- Specify the limitations to plant problem solving through sources of historical data and explain the daily monitoring system guidelines by setting trigger points
- Apply the methods of risk analysis particularly HAZOP and MSDS in process plant troubleshooting and practice the process of engineering problem solving through sample problems in troubleshooting
- Discuss the scope of applied economics including other valuation forms & methods, and review the guidelines for problem solving temperature, pressure, and level
- Employ the simplified approach in solving compressor problems, distillation, plates & tray stability, discuss clearly the elements of measurements & verifications and carryout sample exercise on kinetics, flow, mechanical and designs
- Recognize the attributes of equivalent piping lengths, commercial correlations and fluids by means of practical exercises
- Discuss the importance of two-phase flow including its attributes and applications and analyze the characteristics of controllers, feedback, feedforward and cascade controls used in process control



- Recognize process control and optimization, process analyzers, distillation multiple control, volume control, condenser control and control project drawback
- Employ heat transfer and various troubleshooting techniques and applications used in process plant
- Implement the procedures on distillation column packing and identify the different forms of hazards to equip them with the QRA procedures and demonstration
- Carryout proper methodology of MSDS and discuss if the needed information is good enough or incomplete

Exclusive Smart Training Kit - H-STK

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a Tablet PC.

Who Should Attend

This course provides a complete and up-to-date overview of the process plant troubleshooting techniques and procedures used to solve engineering problems. Process engineers, plant managers, team leaders, section heads, plant supervisors and other technical staff will definitely benefit from the engineering problem solving approach of the course.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours: -

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

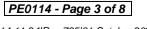
In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.



Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Mervyn Frampton, BSc, PMI-PMP, CSSBB, is a Senior Process Engineer with over 40 years of industrial experience within the Oil & Gas, Refinery, Petrochemical and Utilities industries. His expertise lies extensively in the areas of Operations Asset Integrity, Flare, Blowdown & Pressure Relief Systems Operation, Maintenance & Troubleshooting, Dynamics of the Petrochemicals Industry, Understanding the Global Petrochemical Industry, Petrochemicals Analysis, Natural Gas Liquids &

Petrochemical Industry and Markets, Refinery & Process Industry, Refinery Optimization, Refinery Operations Troubleshooting, Refinery Production Operations, Refinery Process Safety, Petroleum Refinery Process, Asset Operational Integrity, Refinery Induction, Crude Distillation, Crude Oil Properties, Distillation Column Operation & Control, Oil Movement Storage & Troubleshooting, Process Equipment Design, Applied Process Engineering Elements, Process Plant Optimization, Revamping & Debottlenecking, Process Plant Troubleshooting & Engineering Problem Solving, Process Plant Monitoring, Catalyst Selection & Production Optimization, Operations Abnormalities & Plant Upset, Process Plant Start-up & Commissioning, Clean Fuel Technology & Standards, Oil & Gas Field Commissioning Techniques, Pressure Vessel Operation, Gas Processing, Chemical Engineering, Process Reactors Start-Up & Shutdown, Gasoline Blending for Refineries, Urea Manufacturing Process Technology. Continuous Catalytic Reformer (CCR), De-Sulfurization Technology, Advanced Operational & Troubleshooting Skills, Principles of Operations Planning, Rotating Equipment Maintenance & Troubleshooting, Hazardous Waste Management & Pollution Prevention, Heat Exchangers & Fired Heaters Operation & Troubleshooting, Energy Conservation Skills, Catalyst Technology, Chemical Analysis, Process Plant, Commissioning & Start-Up. Alkylation, Hydrogenation, Dehydrogenation, Isomerization, Hydrogenation & De-Alkylation, Fluidized Catalytic Cracking, Catalytic Hydrodesulphuriser, Kerosene Hydrotreater, Thermal Cracker, Catalytic Reforming, Polymerization, Polyethylene, Polypropylene, Pilot Water Treatment Plant, Gas Cooling, Cooling Water Systems, Effluent Systems, Material Handling Systems, Gasifier, Gasification, Coal Feeder System, Sulphur Extraction Plant, Acid Plant Revamp and Crude Pumping. Further, he is also well-versed in HSE Leadership, Project and Programme Management, Project Coordination, Project Cost & Schedule Monitoring, Control & Analysis, Team Building, Relationship Management, Quality Management, Performance Reporting, Project Change Control, Commercial Awareness and Risk Management.

During his career life, Mr. Frampton held significant positions as the **Site Engineering Manager**, **Senior Project Manager**, **Project Engineering Manager**, **Construction Manager**, **Site Manager**, **Area Manager**, **Procurement Manager**, **Factory Manager**, **Technical Services Manager**, **Senior Project Engineer**, **Project Engineer**, **Assistant Project Manager**, **Handover Coordinator** and **Engineering Coordinator** from various international companies such as the **Fluor Daniel**, **KBR** South Africa, **ESKOM**, MEGAWATT PARK, CHEMEPIC, PDPS, CAKASA, **Worley Parsons**, Lurgi South Africa, **Sasol**, **Foster Wheeler**, **Bosch** & **Associates**, **BCG** Engineering Contractors, Fina Refinery, Sapref Refinery, Secunda Engine Refinery just to name a few.

Mr. Frampton has a **Bachelor's** degree in **Industrial Chemistry** from **The City University** in **London**. Further, he is a **Certified Project Management Professional (PMI-PMP)**, a **Certified Six Sigma Black Belt (CSSBB)** from **The International Six Sigma Institute**, a **Certified Internal Verifier/Trainer/Assessor** by the **Institute of Leadership & Management (ILM)**, a **Certified Instructor/Trainer** and has delivered numerous trainings, courses, workshops, conferences and seminars internationally.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 24 th of November 2024
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0845	Troubleshooting
0845 - 0900	Definition, Potential Sources
0900 - 0915	Engineering Problem Solving
0915 - 0930	Course Approach
0930 - 0945	Break
0945 - 1015	Components of Plant Problem Solving
1015 - 1045	Limitations to Plant Problem Solving
1045 - 1115	Sources of Historical Data
1115 - 1145	Daily Monitoring System Guidelines
1145 – 1215	Setting Trigger Points
1215 - 1230	Break
1230 - 1300	Disciplined Learned Problem-Solving Approach
1300 - 1330	Step 1 to Step 6 - Considerations
1330 - 1400	Risk Analysis - HAZOP - MSDS
1400 - 1420	Troubleshooting Manual: Sample Problems
1420 - 1430	Recap
1430	Lunch & End of Day One

Monday, 25th of November 2024 Dav 2:

0730 - 0815	Applied Economics
0815 - 0900	Valuation Principles & Methods
0900 - 0930	Other Valuation Principle & Methods
0930 - 0945	Break
0945 - 1030	Compressor - Compressor Problems - Simplified Approach
1030 - 1130	Distillation, Plates, Tray Stability
1130 – 1215	Guidelines for Problem Solving Temperature, Pressure, Level
1215 - 1230	Break
1230 - 1330	Measurements, Verification
1330 - 1420	Sample Exercise Kinetics, Flow, Mechanical, Design
1420 – 1430	Recap
1430	Lunch & End of Day Two

Tuesday, 26th of November 2024 Dav 3:

	: uccuuj; = 0 : ::::::::::::::::::::::::::::::::
0730 - 0745	Fluid Overview - Basic Principles
0745 - 0800	Fluid Overview – Head Definition
0800 - 0830	Equivalent Piping Lengths
0830 - 0900	Commercial Correlations
0900 - 0915	Practical Exercises
0915 - 0930	Break

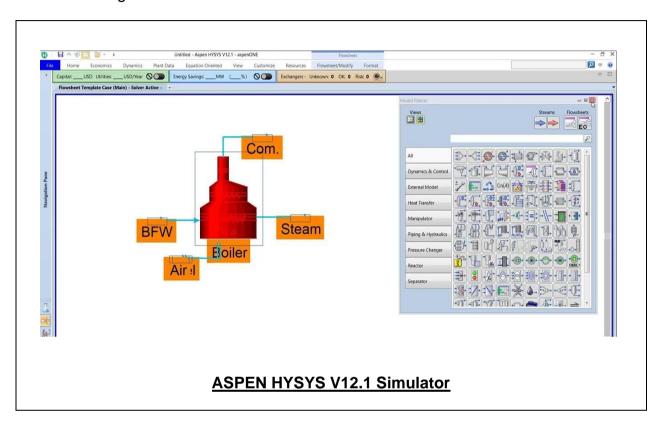
0930 - 1000	Two Phase Flow/Theory & Applications
1000 - 1015	Practical Exercises
1015 - 1045	Process Control - Introduction; PID
1045 – 1115	Controllers, Feedback, Feedforward & Cascade Controls
1115 – 1145	Advanced Control; Multi-loop
1145 – 1200	Break
1200 - 1230	Controllers; Process Control & Optimization
1230 - 1300	On Line Optimization; Process Analysers
1300 - 1330	Distillation Multiple Control; Volume Control
1330 - 1400	Condenser Control, Practical Considerations, Advanced
1400 - 1420	Control Project Drawback
1420 – 1430	Recap
1430	Lunch & End of Day Three

Day 4: Wednesday, 27th of November 2024

0730 - 0930	Heat Transfer Overview
0930 - 0945	Break
0945 - 1115	Troubleshooting Techniques/Applications
1115 – 1145	Practical Exercises
1145 – 1200	Break
1200 – 1400	Distillation Column Packing
1400 - 1420	Practical Exercises
1420 – 1430	Recap
1430	Lunch & End of Day Four

Day 5: Thursday, 28th of November 2024

Day o.	marcady, 20 Critic verifical 2021
0730 - 0815	Hazards
0815 - 0900	Demonstration
0900 - 0945	QRA
	"Ishikawa" Diagrams • Exercises
0945 - 1000	Break
1000 - 1045	MSDS
1045 - 1130	Needed Information, Is it Good Enough?
1130 – 1215	Incomplete?
1215 - 1230	Break
1230 - 1300	Accidents
1300 - 1330	FLIXBOROUGH ACCIDENT
1330 - 1345	Lessons learned, General Information
1345 - 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course



Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "ASPEN HYSYS" simulator.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

