

COURSE OVERVIEW IE1118 Design Criteria in Instrumentation Engineering

CEUS

(30 PDHs) AWAR

Course Title

Design Criteria in Instrumentation Engineering

Course Reference

IE1118

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Date/Venue		
Session(s)	Date	Venue
1	June 29-July 03, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
2	September 21-25, 2025	Al Buraimi Meeting Room, Sheraton Oman Hotel, Muscat, Oman
3	January 18-22, 2026	Al Buraimi Meeting Room, Sheraton Oman Hotel, Muscat, Oman
4	April 12-16, 2026	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of the Design Criteria in Instrumentation Engineering. lt covers the instrumentation engineering and its role in industrial processes; the basic measurement principles and design considerations for process sensors; the control system architectures, instrumentation and control loop design; documentation and project deliverables the and temperature measurement design; and the pressure and differential pressure instruments.

Further, the course will also discuss the level measurement techniques and flow measurement devices, analytical instrument design, criteria and instrument specification sheets; the field instrument installation criteria, cable selection and routing design; the junction boxes and marshaling panels, intrinsically safe and explosion proof design, earthing and grounding design and instrument air system design; and the control valve design criteria and instrument-to-control system integration.

IE1118- Page 1 of 12

During this interactive course, participants will learn the safety instrumented systems (SIS) design covering SIL levels, risk analysis (LOPA), redundancy, voting logic, safety relays, PLCs, test intervals and proof testing; the communication protocols and networking, commissioning and calibration design aspects and design reviews and quality control; the smart instrumentation and digital technologies and designing for maintainability and reliability; and the instrumentation design for harsh environments including energy efficiency and sustainability in design.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on design criteria in instrumentation engineering
- Discuss the instrumentation engineering and its role in industrial processes
- Explain basic measurement principles and design considerations for process sensors
- Illustrate control system architectures, instrumentation and control loop design and documentation and project deliverables
- Carryout temperature measurement design and recognize pressure and differential pressure instruments
- Apply level measurement techniques and flow measurement devices, analytical instrument design, criteria and instrument specification sheets
- Identify field instrument installation criteria, and carryout cable selection and routing design
- Recognize junction boxes and marshaling panels, intrinsically safe and explosion proof design, earthing and grounding design and instrument air system design
- Identify control valve design criteria and apply instrument-to-control system integration
- Illustrate safety instrumented systems (SIS) design covering SIL levels, risk analysis (LOPA), redundancy, voting logic, safety relays, PLCs, test intervals and proof testing
- Apply communication protocols and networking, commissioning and calibration design aspects and design reviews and quality control
- Recognize smart instrumentation and digital technologies and designing for maintainability and reliability
- Describe instrumentation design for harsh environments including energy efficiency and sustainability in design

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

IE1118- Page 2 of 12

Who Should Attend

This course provides a basic overview of all significant aspects and considerations of design criteria in instrumentation engineering for instrumentation engineers, electrical and control engineers, project engineers, project managers, process engineers, supervisors, technicians and other technical staff.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

IE1118- Page 3 of 12

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Sydney Thoresson, PE, BSc, is a Senior Electrical & Instrumentation

Engineer with over 30 years of extensive experience within the Petrochemical, Utilities, Oil, Gas and Power industries. His specialization highly evolves in Process Control Instrumentation, Process Instrumentation & Control, Process Control, Instrumentation, Troubleshooting & Problem Solving, Instrumentation Engineering, Process Control (PCI) & Safeguarding, Instrument Calibration & Maintenance, Instrumented Safety Systems, High Integrity Protection Systems (HIPS), Process Controller, Control Loop & Valve Tuning, Compressor Control & Protection, Control Systems, Programmable Logic Controllers (PLC), SCADA System, PLC & SCADA - Automation & Process Control, PLC & SCADA Systems Application, Technical DCS/SCADA, PLC-SIMATIC S7 300/400: Configuration, Programming and Troubleshooting, PLC, Telemetry and SCADA Technologies, Cyber Security of Industrial Control System (PLC, DCS, SCADA & IED), Basics of Instrumentation Control System, DCS, Distributed Control System - Operations & Techniques, Distributed Control System (DCS) Principles, Applications, Selection & Troubleshooting, Distributed Control Systems (DCS) especially in Honeywell DCS, H&B DCS, Modicon, Siemens, Telemecanique, Wonderware and Adrioit, Safety Instrumented Systems (SIS), Safety Integrity Level (SIL), Emergency Shutdown (ESD), Emergency Shutdown System, Variable Frequency Drive (VFD), Process Control & Safeguarding, Field Instrumentation, Instrumented Protective Devices Maintenance & Testing, Instrumented Protective Function (IPF), Refining & Rotating Equipment, Equipment Operations, Short Circuit Calculation, Voltage Drop Calculation, Lighting Calculation, Hazardous Area Classification, Intrinsic Safety, Liquid & Gas Flowmetering, Custody Measurement, Ultrasonic Flowmetering, Loss Control, Gas Measurement, Flowmetering & Custody Measurement, Multiphase Flowmetering, Measurement and Control, Mass Measuring System Batching (Philips), Arc Furnace Automation-Ferro Alloys, Walking Beam Furnace, Blast Furnace, Billet Casting Station, Cement Kiln Automation, Factory Automation and Quality Assurance Accreditation (ISO 9000 and Standard BS 5750). Further, he is also wellversed in Electrical Safety, Electrical Hazards Assessment, Electrical Equipment, Personal Protective Equipment, Log-Out & Tag-Out (LOTO), ALARP & LOPA Methods, Confined Workspaces, Power Quality, Power Network, Power Distribution, Distribution Systems, Power Systems Control, Power Systems Security, Power Electronics, Electrical Substations, UPS & Battery System, Earthing & Grounding, Power Generation, Protective Systems, Electrical Generators. Power & Distribution Transformers. Electrical Motors. Switchgears. Transformers, AC & DC Drives, Variable Speed Drives & Generators and Generator Protection. He is currently the Projects Manager wherein he manages projects in the field of electrical and automation engineering and in-charge of various process hazard analysis, fault task analysis, FMEA and HAZOP study.

During Mr. Thoresson's career life, he has gained his thorough and practical experience through various challenging positions and dedication as the **Contracts & Projects Manager**, **Managing Director**, **Technical Director**, **Divisional Manager**, **Plant Automation Engineer**, **Senior Consulting Engineer**, **Senior Systems Engineer**, **Consulting Engineer**, **Service Engineer** and **Section Leader** from several international companies such as **Philips**, **FEDMIS**, **AEG**, **DAVY International**, **BOSCH**, **Billiton** and **Endress/Hauser**.

Mr. Thoresson is a **Registered Professional Engineering Technologist** and has a **Bachelor**'s degree in **Electrical & Electronics Engineering** and a **National Diploma** in **Radio Engineering**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management (ILM)** and an active member of the International Society of Automation (ISA) and the Society for Automation, Instrumentation, Measurement and Control (SAIMC). He has further delivered numerous trainings, courses, seminars, conferences and workshops

IE1118- Page 4 of 12

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

	Day	1
--	-----	---

0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830- 0930	Introduction to Instrumentation Engineering Role in Industrial Processes • Instrumentation Lifecycle Phases • Key Standards & Codes (ISA, IEC, API) • Interface with Control Systems & Safety
0930 - 0945	Break
0945 – 1030	Basic Measurement Principles Physical Properties (Temperature, Pressure, Flow, Level) • Sensor versus Transmitter Concepts • Accuracy, Precision, Resolution • Signal Conditioning Basics
1030 – 1100	Design Considerations for Process Sensors Sensor Selection Criteria • Process Compatibility (Chemical, Thermal, Pressure) • Environmental Factors • Installation Constraints
1100- 1230	Control System Architectures Centralized versus Distributed Systems • DCS & PLC Integration • Redundancy & Reliability • Scalability Considerations
1230 – 1245	Break
1245 – 1315	<i>Instrumentation & Control Loop Design</i> <i>Open versus Closed Loops</i> • <i>P&ID Interpretation</i> • <i>Loop Diagrams &</i> <i>Functional Descriptions</i> • <i>Instrument Loop Checks & Verification</i>

IE1118- Page 5 of 12

ILING RECORDER DOT 2015 Certified

	Documentation & Project Deliverables
1315–1330	Instrument Index Preparation • Data Sheets & Specifications • Loop
	Drawings & Wiring Diagrams • Cable Schedules & Terminal Plans
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about
	the Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

	Temperature Measurement Design
0730 - 0830	RTDs, Thermocouples, Thermistors • Insertion Length, PROTECTION
	Wells • Accuracy Class & Range • Environmental & Installation Factors
	Pressure & Differential Pressure Instruments
0830-0930	Types (Gauge, Absolute, DP) • Impulse Line Design • Manifold &
	Tapping Point Considerations • Installation Guidelines
0930 - 0945	Break
	Level Measurement Techniques
0945 - 1130	Displacer, Radar, Ultrasonic, DP-Based • Interface Measurement
	Challenges • Vessel Connection Points • Calibration & Rangeability
	Flow Measurement Devices
1130 1230	Differential Pressure, Magnetic, Coriolis, Ultrasonic • Reynolds Number &
1150 - 1250	Straight Run Requirements • Line Size & Material Selection • Accuracy
	versus Cost Trade-Offs
1230 – 1245	Break
	Analytical Instrument Design Criteria
1245 – 1315	<i>pH, Conductivity, Oxygen, Gas Analyzers</i> • <i>Sample Conditioning Systems</i>
	Sensor Fouling & Cleaning • Calibration Frequency & Access
	Instrument Specification Sheets
1315- 1330	Key Elements of Datasheets • Standard Formats (ISA 20, Vendor Formats)
	• Material of Construction & Approvals • Electrical & Communication
	Parameters
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about
1120 1100	the Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

	Field Instrument Installation Criteria
0720 0820	Location Accessibility • Ambient Conditions (Temperature, Vibration,
0750 - 0850	Humidity) • Orientation & Mounting Support • Protection Against
	Mechanical Damage
	Cable Selection & Routing Design
0830- 0930	Cable Types (Signal, Power, Twisted Pair, Shielded) • Voltage Drop &
	Current Carrying • EMC/EMI Considerations • Routing Separation Rules
	(Signal versus Power)
0930 - 0945	Break
	Junction Boxes & Marshaling Panels
0945 – 1130	Layout & Labeling Conventions • Terminal Sizing & Segregation • Cable
	Gland & Entry Practices • Grounding & Shielding Continuity

IE1118- Page 6 of 12

	Intrinsically Safe & Explosion Proof Design
1130 - 1230	Zone Classification (ATEX, IECEs) • IS Barriers & Isolators • Enclosure
	Selection (IP/NEMA Ratings) • Design Approval Documentation
1230 – 1245	Break
	Earthing & Grounding Design
101E 121E	Functional versus Safety Grounding • Shield Grounding Techniques •
1245 - 1315	Grounding for Surge & Lightning Protection • Earthing Resistance
	Measurement
	Instrument Air System Design
1315-1330	Sizing & Pressure Requirement • Air Quality (Dry, Oil-Free) • Manifold &
	Distribution • Fail-Safe Operation Integration
1420 – 1430	Recap
	<i>Using this Course Overview, the Instructor(s) will Brief Participants about</i>
	the Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

	Control Valve Design Criteria
0730 - 0830	Valve Sizing & Cv Calculation • Valve Body, Trim, Actuator Selection •
	Positioners & Feedback Systems • Noise & Cavitation Prevention
	Instrument-to-Control System Integration
0020 0020	Signal Types (4-20ma, HART, Modbus, FOUNDATION Fieldbus) • I/O
0830-0930	Configuration in Control Systems • Smart Instruments & Diagnostics •
	Alarm & Trip Logic Interfacing
0930 - 0945	Break
	Safety Instrumented Systems (SIS) Design
0945 - 1130	SIL Levels & Risk Analysis (LOPA) • Redundancy & Voting Logic • Safety
	Relays & Safety PLCs • Test Intervals & Proof Testing
	Communication Protocols & Networking
1130 – 1230	Protocol Selection (Profibus, Ethernet/IP, HART) • Network Topology &
	Redundancy • Cybersecurity Basics • Integration with SCADA/DCS/PLC
1230 - 1245	Break
	Commissioning & Calibration Design Aspects
1245 – 1315	Factory Acceptance Test (FAT) • Site Acceptance Test (SAT) • Calibration
	Procedures & Tools • Verification Reports & Traceability
	Design Reviews & Quality Control
1315–1330	Design Document Checklist • Constructability & Operability • HAZOP &
	Design Risk Assessment • Compliance with Standards & Codes
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about
	the Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

0730 – 0830 IIoT-Enabled Instruments • Wireless Instrumentation (ISA10 Wirelessbart) • Cloud Integration • Predictive Diagnostics & Heal		Smart Instrumentation & Digital Technologies
Monitoring	0730 - 0830	IIoT-Enabled Instruments • Wireless Instrumentation (ISA100) Wirelesshart) • Cloud Integration • Predictive Diagnostics & Health Monitoring

IE1118- Page 7 of 12

	Designing for Maintainability & Reliability
0830- 0930	MTBF, MTTR, Availability Metrics • Hot Swap & Bypass Features •
	Access & Replaceability • Spare Parts & Lifecycle Planning
0930 - 0945	Break
	Instrumentation Design for Harsh Environments
0945 1100	Offshore, Desert, Cryogenic, Nuclear Environments • IP Ratings, Enclosure
0945 - 1100	Cooling • Corrosion Protection (SS316, Coatings) • Design for Redundancy
	& Resilience
	Energy Efficiency & Sustainability in Design
1100 – 1230	Low-Power Devices • Solar-Powered Instrumentation • Remote Monitoring
	& Optimization • Reducing Compressed Air Usage
1230 - 1245	Break
	Case Studies in Instrumentation Design
1245 – 1345	<i>Oil & Gas Process Plant • Power Plant Instrumentation • Water Treatment</i>
	Plant • Chemical & Pharma Plants
	Course Conclusion
1345 – 1400	Using this Course Overview, the Instructor(s) will Brief Participants about
	the Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

IE1118- Page 8 of 12

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using one of our state-of-the-art simulators "Allen Bradley SLC 500", "AB Micrologix 1000 (Digital or Analog)", "AB SLC5/03", "AB WS5610 PLC", "Siemens S7-1200", "Siemens S7-400", "Siemens SIMATIC S7-300", "Siemens S7-200", "GE Fanuc Series 90-30 PLC", "Siemens SIMATIC Step 7 Professional Software", "HMI SCADA", "Gas Ultrasonic Meter Sizing Tool", "Liquid Turbine Meter and Control Valve Sizing Tool", "Liquid Ultrasonic Meter Sizing Tool", "Orifice Flow Calculator", "Automation Simulator" and "PLCLogix 5000 Software".

Allen Bradley SLC 500 Simulator

Allen Bradley Micrologix 1000 Simulator (Analog)

Allen Bradley WS5610 PLC Simulator PLC5

Allen Bradley Micrologix 1000 Simulator (Digital)

Allen Bradley SLC 5/03

Siemens S7-1200 Simulator

IE1118- Page 9 of 12

Siemens S7-400 Simulator

Siemens SIMATIC S7-300

Siemens S7-200 Simulator

<u>GE Fanuc Series 90-30 PLC</u> <u>Simulator</u>

Siemens SIMATIC Step 7 Professional Software

HMI SCADA

IE1118- Page 10 of 12

Gas Ultrasonic Meter (USM) Sizing <u>Tool Simulator</u>

Liquid Ultrasonic Meter Sizing Tool Simulator

Daniel Liquid Turbine And Valve Sizing Tool File Product Literature Print Help Turbine Meter Selection Valve Selection Process Conditions Fluid
Project Title / Tag
Fluid List
Gasoline
 Specific Gravity / Density
 Viscosity

 0.72
 Specific Gravity
 1.1
 Centistoke
 Units Gallons Maximum 600 Minimum 0perating 200 400 Flow Rate ▼ Per Minute ▼ Temperature 20 OF CT 60 100 Pressure 60 100 PSI • Meter Selection Turbine C Series 1200 Meter C Series 1500 Select a Series 1200 or Series 1500 Turbine Meter

Liquid Turbine Meter and Control Valve Sizing Tool

Orifice Flow Calculator Simulator

IE1118- Page 11 of 12

Course Coordinator

Mari Nakintu, Tel: +971 230 91 714, Email: mari1@haward.org

IE1118- Page 12 of 12

