

COURSE OVERVIEW EE1114 CCGT Technology

Course Title CCGT Technology

Course Date/Venue

Session 1: August 18-22, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE Session 2: December 22-26, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

EE1114

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

t

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of CCGT Technology. It covers the CCGT systems, gas turbine and steam turbine fundamentals, combined cycle operation and fuel types and considerations; the key safety concerns in CCGT operations, monitoring and control systems, system reliability and maintenance requirements and emergency shutdown procedures; the key design factors for CCGT plants and layout and spatial requirements; and the integration of gas and steam turbines and power output and efficiency targets.

Further, the course will also discuss the function and types of HRSGs and its design principles for efficiency; the gas and steam cycle efficiency optimization, advanced turbine configurations and performance enhancement technologies; the cooling systems in CCGT, electrical systems and integration and automation and control systems; the detailed thermodynamic analysis of CCGT cycles and key performance indicators (KPIs) for operational efficiency; and the calculation of heat rate, performance monitoring techniques and analyzing heat rate improvements.

EE1114 - Page 1 of 9

EE1114-08-25|Rev.01|13 April 2025

During this interactive course, participants will learn the environmental impact of CCGT technology, NOx and CO2 emissions reduction, compliance with environmental regulations and carbon capture and storage technologies; the flexibility and load following capabilities and maintenance strategies for CCGT systems including performance testing and optimization and advanced CCGT configurations; the modernization techniques for older gas turbines, upgrading to improve efficiency and performance, retrofitting with advanced control and monitoring systems and costbenefit analysis of turbine upgrades; the combined heat and power (CHP) in CCGT, CCGT in district heating and cooling, turbine performance analysis and digitalization and smart CCGT plants; the CCGT in a low-carbon future and energy storage systems; and the emerging technologies in gas turbines and digital transformation.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on CCGT technology
- Discuss CCGT systems, gas turbine and steam turbine fundamentals, combined cycle operation and fuel types and considerations
- Recognize key safety concerns in CCGT operations, monitoring and control systems, system reliability and maintenance requirements and emergency shutdown procedures
- Identify the key design factors for CCGT plants, layout and spatial requirements, integration of gas and steam turbines and power output and efficiency targets
- Discuss the function and types of HRSGs and its design principles for efficiency as well as apply gas and steam cycle efficiency optimization, advanced turbine configurations and performance enhancement technologies
- · Recognize cooling systems in CCGT, electrical systems and integration and automation and control systems
- Carryout detailed thermodynamic analysis of CCGT cycles, key performance indicators (KPIs) for operational efficiency, calculation of heat rate, performance monitoring techniques and analyzing heat rate improvements
- Discuss environmental impact of CCGT technology, NOx and CO2 emissions reduction, compliance with environmental regulations and carbon capture and storage technologies
- Interpret flexibility and load following capabilities and apply maintenance strategies for CCGT systems including performance testing and optimization and advanced **CCGT** configurations
- Employ modernization techniques for older gas turbines, upgrading to improve efficiency and performance, retrofitting with advanced control and monitoring systems and cost-benefit analysis of turbine upgrades
- Discuss combined heat and power (CHP) in CCGT, CCGT in district heating and cooling, turbine performance analysis and digitalization and smart CCGT plants
- Recognize CCGT in a low-carbon future, energy storage systems and CCGT, emerging technologies in gas turbines and CCGT and the digital transformation

EE1114 - Page 2 of 9

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of CCGT technology for engineers, supervisors, operations and maintenance personnel, operational support and other technical staff.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures
20% Practical Workshops & Work Presentations
30% Hands-on Practical Exercises & Case Studies
20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

EE1114 - Page 3 of 9

EE1114-08-25|Rev.01|13 April 2025

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

EE1114 - Page 4 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Karam Mohamed, PhD, MSc, BSc, is a **Senior Electrical Engineer** with over **20 years** of extensive industrial experience. His expertise covers **Power Generation**, **Steam Power Plants**, **Co-Generation**, **Transformers**, **Combined Cycle Plants**, **Electrical Power System Protection & Control**, Electrical **Distribution System**, Electrical **Power System Installations**,

Design of Electric Services for Projects, **Relays**, **System Earthing**, **Protective Earthing** and Power System Protection Equipment. Further, his experience includes electric circuits, power system analysis, electrical machines and digital power system protection. He is currently the Senior Professor of one of the leading universities in the Middle East.

During his career life, Dr. Karam has been a main consultant of multiple projects in the Middle East, where he was in-charge of strategic planning, infrastructure design of electrical work for new cities and villages, internal and external lighting systems earthing, LV & MV panels and networks, transformer, switchgears and standby generator selection.

Dr. Karam has a PhD in Electrical Power and Machines Engineering and Master and Bachelor degrees in Power Engineering & Electrical Machines. Further, he is a Certified Instructor/Trainer and has published numerous books such as "IEEE Transaction on Power Delivery", "A New Protection Scheme for Short Transmission Lines" and "Electricity Today" just to name a few. Furthermore, he is an active member of the Institute of Electrical and Electronics Engineers (IEEE) and has delivered numerous conferences, trainings, courses and workshops in the USA, Canada and Middle East.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Dav 1

0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Overview of CCGT Systems
0830 - 0930	History & Development of CCGT Technology • Components of a Combined
	Cycle Power Plant • Basic Working Principle of CCGT • Key Benefits &
	Challenges of CCGT Systems
0930 - 0945	Break
	Gas Turbine Fundamentals
0945 – 1030	Gas Turbine Components & Types • Working Principle of a Gas Turbine •
	Performance Characteristics of Gas Turbines • Efficiency & Fuel Consumption
	🚵 🛋 📖 EE1114 - Page 5 of 9

Haward Technology Middle East

1030 - 1130	Steam Turbine Fundamentals
	Basic Steam Cycle & Thermodynamics • Components of Steam Turbines • Role
	of Steam Turbines in CCGT • Efficiency Improvement via Steam Cycles
	Combined Cycle Operation
1130 - 1215	How CCGT Integrates Gas & Steam Turbines • Heat Recovery Steam
	Generators (HRSG) • Operational Principles of CCGT • Load & Output
	Variations in Combined Cycles
1215 – 1230	Break
1000 1000	Fuel Types & Considerations
	<i>Types of Fuels Used in CCGT Systems (Natural Gas, Oil, etc.)</i> • <i>Fuel Selection</i>
1230 - 1330	Criteria for CCGT Plants • Emissions Control & Environmental Impacts •
	Fuel Efficiency & Cost Considerations
1330 - 1420	Safety & Reliability of CCGT Systems
	Key Safety Concerns in CCGT Operations • Monitoring & Control Systems •
	System Reliability & Maintenance Requirements • Emergency Shutdown
	Procedures
	Recap
1420 1420	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

	Plant Design Considerations
0730 - 0830	Key Design Factors for CCGT Plants • Layout & Spatial Requirements •
	Integration of Gas & Steam Turbines • Power Output & Efficiency Targets
	HRSG Design & Operation
0830 - 0930	Function & Types of HRSGs • HRSG Design Principles for Efficiency • Heat
	Recovery in CCGT Systems • Maintenance & Operational Challenges
0930 - 0945	Break
0045 1100	Power Cycle Optimization
	Optimization of Gas & Steam Cycle Efficiency • Advanced Turbine
0945 - 1100	Configurations • Role of Condenser & Cooling Systems • Performance
	Enhancement Technologies
	Cooling Systems in CCGT
1100 1215	Types of Cooling Systems (Once-Through, Cooling Towers, etc.) • Thermal
1100 - 1215	Efficiency in Cooling Systems • Environmental Considerations for Cooling
	Methods • Water Use & Management in CCGT Plants
1215 – 1230	Break
	Electrical Systems & Integration
1220 1220	Electrical Generation & Distribution in CCGT • Grid Integration &
1230 - 1330	Synchronization • Electrical Power Quality in CCGT Plants • Protection &
	Fault Detection Systems
1330 – 1420	Automation & Control Systems
	Control Systems Architecture for CCGT • SCADA & Distributed Control
	Systems (DCS) • Instrumentation & Monitoring Tools • Automated Plant
	Operations & Troubleshooting
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

EE1114 - Page 6 of 9

Day	3

	Thermodynamic Cycle & Efficiency
0730 - 0830	Detailed Thermodynamic Analysis of CCGT Cycles • Efficiency Gains Through
	Combined Cycles • Performance Curves for CCGT Systems • Key Performance
	Indicators (KPIs) for Operational Efficiency
	Heat Rate & Performance Monitoring
0830 - 0930	Definition & Calculation of Heat Rate • Performance Monitoring Techniques •
	Analyzing Heat Rate Improvements • Fuel-to-Electricity Conversion Efficiency
0930 - 0945	Break
	Emissions & Environmental Considerations
0045 1100	Environmental Impact of CCGT Technology • NOx & CO2 Emissions
0945 - 1100	Reduction • Compliance with Environmental Regulations • Carbon Capture &
	Storage Technologies
	Flexibility & Load Following Capabilities
1100 1215	Load Following in CCGT Operations • Impact of Fluctuating Demand on
1100 - 1215	Performance • Modulating Steam & Gas Turbine Operation • Strategies for
	Increasing Operational Flexibility
1215 – 1230	Break
	Maintenance Strategies for CCGT Systems
1230 - 1330	Preventative versus Corrective Maintenance • Condition Monitoring &
1230 - 1330	Diagnostics • Maintenance Scheduling & Downtime Reduction • Spare Parts
	Management & Inventory Control
	Performance Testing & Optimization
1330 1420	Testing Methods for CCGT Efficiency • Performance Benchmarks & Best
1000 - 1420	Practices • Data Collection & Analysis for Optimization • Case Studies of
	Optimized CCGT Plants
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Dav 4

0730 - 0830	Advanced CCGT Configurations
	Advanced Combined Cycle Designs • Integration with Renewable Energy
	Sources • Hybrid CCGT Systems (Solar, Wind, etc.) • Multi-Shaft versus
	Single-Shaft Configurations
0830 - 0930	Gas Turbine Upgrades & Retrofitting
	Modernization Techniques for Older Gas Turbines • Upgrading to Improve
	Efficiency & Performance \bullet Retrofitting with Advanced Control & Monitoring
	Systems • Cost-Benefit Analysis of Turbine Upgrades
0930 - 0945	Break
0945 - 1100	Combined Heat & Power (CHP) in CCGT
	Integration of CHP with CCGT Systems • Benefits of Combined Heat & Power
	• Applications in Industrial & Residential Sectors • Efficiency Improvements
	Through CHP Systems
1100 – 1215	CCGT in District Heating & Cooling
	Role of CCGT in District Energy Systems • Thermal Storage & Demand
	Management • Benefits of CCGT for Urban Energy Needs • Environmental
	Advantages of District Heating Systems
1215 – 1230	Break
	🚓 🛋 🗼 EE1114 - Page 7 of 9
C	

1230 - 1330	Turbine Performance AnalysisMethods for Turbine Performance Analysis• Real-Time PerformanceMonitoring• Analyzing Efficiency Losses & their Causes• Tools forOptimizing Turbing Deformance
1330 - 1420	Digitalization & Smart CCGT Plants Role of IoT in CCGT Plant Operation • Data Analytics for Predictive Maintenance • Digital Twin Technologies in CCGT Plants • Smart Grid Integration with CCGT Systems
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Dav 5

Duyo	
0730 – 0830	CCGT in a Low-Carbon Future Role of CCGT in Decarbonization Strategies • Integration of Green Hydrogen with CCGT • Carbon Capture & Storage Technologies • The Future of CCGT in a Renewable Grid
	Energy Storage Systems & CCGT Role of Energy Storage in CCGT Plants • Integration with Battery Energy
0830 – 0930	Storage Systems (BESS) • Technologies for Enhancing Energy Storage in CCGT • Economic Considerations for Energy Storage
0930 - 0945	Break
	Emerging Technologies in Gas Turbines
0945 – 1100	Next-Generation Turbine Designs • Advanced Materials & Coatings • Improvements in Fuel Efficiency • Carbon-Neutral & Low-Emission Turbine
	Technologies
	CCGT & the Digital Transformation
1100 1220	Digitalization Trends in CCGT Plants • Role of AI & Machine Learning in
1100 - 1230	Operations • The Impact of Blockchain on Energy Systems • Future of Smart
	Grids & CCGT Integration
1230 - 1245	Break
	Financial & Operational Challenges
1245 – 1300	Financial Modeling for CCGT Projects • Return on Investment (ROI) & Life-
	Cycle Costs • Risk Management in CCG1 Investments • Regulatory & Policy Considerations
	Case Studies & Best Practices
1300 - 1345	Real-World Case Studies of Successful CCGT Plants • Lessons Learned from
	Plant Failures & Optimizations • Best Practices in CCGT Design & Operation
	Future Outlook for CCGT Technology
	Course Conclusion
1345 – 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
1400 1415	Course Topics that were Covered During the Course
1400 - 1415	
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

EE1114 - Page 8 of 9

Simulator (Hands-on Practical Sessions)

Practical session will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "Single Shaft Gas Turbine" and "Two Shaft Gas Turbine simulators".

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

EE1114 - Page 9 of 9

EE1114-08-25|Rev.01|13 April 2025