

<u>COURSE OVERVIEW PE1042-4D</u> <u>Continuous Catalyst Regeneration (CCR)</u> <u>Platforming - Process Standard</u>

Course Title

Continuous Catalyst Regeneration (CCR) Platforming -Process Standard

(24 PDHs)

AWARY

Course Reference PE1042-4D

PE1042-4D

Course Duration/Credits Four days/2.4 CEUs/24 PDHs

Course Date/Venue

Session(s)	Date	Venue
1	June 16-19, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
2	August 03-06, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
3	November 23-26, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
4	December 08-11, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Continuous Catalyst Regeneration (CCR) Platforming - Process Standard. It covers the platforming process, basic principles of catalytic reforming, continuous catalyst regeneration (CCR) system and catalyst deactivation mechanisms; the catalyst performance and regeneration, process flow diagram (PFD) for CCR platforming and design of the CCR reactor; the reactor operating conditions, regeneration process and catalyst bed management; the heat and mass balance in CCR and troubleshooting reactor issues; and the control systems in CCR platforming, automation of CCR operations, advanced process control (APC) for CCR and instrumentation for monitoring and control.

During this interactive course, participants will learn the CCR process optimization, safety and environmental considerations; advanced catalyst regeneration techniques, signs of catalyst failure and handling deactivation issues; analyzing catalyst behavior over time, catalyst reactivation methods and reducing energy consumption in the reactor; the energy recovery methods, heat integration in the platforming process and energy balance in CCR operations; diagnosing operational issues in reactors and regenerators; the common faults in heat exchangers and reactors, cooling and heating issues and managing off-spec product quality; controlling octane numbers and managing aromatics and hydrogen content; and identifying impurities in platforming products and the product specification monitoring.

PE1042-4D - Page 1 of 8

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on continuous catalyst regeneration (CCR) platforming process standard
- Discuss platforming process, basic principles of catalytic reforming, continuous catalyst regeneration (CCR) system and catalyst deactivation mechanisms
- Illustrate catalyst performance and regeneration, process flow diagram (PFD) for CCR platforming and design of the CCR reactor
- Recognize reactor operating conditions and the regeneration process as well as apply catalyst bed management
- Identify heat and mass balance in CCR, troubleshoot reactor issues and discuss control systems in CCR platforming
- Employ automation of CCR operations, advanced process control (APC) for CCR and instrumentation for monitoring and control
- Carryout CCR process optimization, safety and environmental considerations and advanced catalyst regeneration techniques
- Identify signs of catalyst failure, handle deactivation issues, analyze catalyst behavior over time and implement catalyst reactivation methods
- Reduce energy consumption in the reactor and apply energy recovery methods, heat integration in the platforming process and energy balance in CCR operations
- Diagnose operational issues in reactors and regenerators, identify common faults in heat exchangers and reactors, address cooling and heating issues and manage offspec product quality
- Control octane numbers, manage aromatics and hydrogen content, identify impurities in platforming products and apply product specification monitoring

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of continuous catalyst regeneration (CCR) platforming - process standard for process engineers, CCR unit operators, shift supervisors & operations supervisors, maintenance and reliability engineers, technical services & support staff, HSE personnel and project engineers.

PE1042-4D - Page 2 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

BA

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

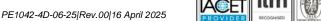
Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

PE1042-4D - Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:


Dr. John Petrus, PhD, MSc, BSc, is a Senior Process Engineer with over 30 years of onshore & offshore experience within the Oil & Gas, Refinery and Petroleum industries. His wide experience covers in the areas of **De-Sulfurization** Technology, **Process Troubleshooting**, **Distillation** Towers, Fundamentals of Distillation for Engineers, Distillation Operation and Troubleshooting, Advanced Distillation Troubleshooting, Distillation Technology, Vacuum Distillation, Distillation Column Operation & Control, Oil Movement Storage & Troubleshooting, Process Equipment Design, Applied Process Engineering Elements, Process Plant Optimization, Revamping & Debottlenecking, Process Plant Troubleshooting & Engineering Problem Solving, Process Plant Monitoring, Catalyst Selection & Production Optimization, Operations Abnormalities & Plant Upset, Process Plant Start-up & Commissioning, Clean Fuel Technology & Standards, Flare, Blowdown & Pressure Relief Systems, Oil & Gas Field Commissioning Techniques, Pressure Vessel Operation, Gas Processing, Chemical Engineering, Process Reactors Start-Up & Shutdown, Gasoline Blending for Refineries, Urea Manufacturing Process Technology, Continuous Catalytic Reformer (CCR), Advanced Operational & Troubleshooting Skills, Principles of Operations Planning, Rotating Equipment Maintenance & Troubleshooting. Further he is also well versed in Rotating Machinery Principles & Applications, Rotating Equipment Selection, Operation, Maintenance, Inspection & Troubleshooting, Rotating Machine/Equipment in Industry, Control Valves & Actuators, PSV Maintenance & Testing, Pump Selection, Installation, Performance & Control, Screw Compressor Theory and Troubleshooting, Reliability-Centered Maintenance (RCM), Preventive & Predictive Maintenance, Spare Parts Planning & Inventory Management, Computerized Maintenance Management Systems (CMMS), Process Plant Shutdown & Turnaround, Maintenance Optimization & Best Practices, Reliability Centered Maintenance Principles & Application, Efficient Shutdowns, Turnaround & Outages, Effective Reliability Maintenance & Superior Maintenance Strategies, Integrity & Asset Management, Total Plant Reliability Maintenance, Vibration Measurement, Advanced Analytics in Oil & Gas, Business Intelligence Data Analytics, Audit Analytics & Computer-Assisted Audit Techniques (CAATs), Basic Database Concepts & Data Formats, Data Analysis Cycle & Best Practices, Data Importing & Integrity Verification, Advanced Analytics Tools in Auditing, Leveraging AI & Machine Learning in Audits, Data Mining Techniques for Auditors, Data Analytics for Managerial Decision Making, Business Process Analysis, Mapping & Modeling, Research Methods & Analysis, Statistical Data Needs Analysis, Oil & Gas Industry Business Environment & Competitive Intelligence Gathering & Analysis, Petroleum Economics & Risk Analysis, Certified Data Analysis, Risk Management & SWIFT Analysis, Best Practices Management System (BPMS), GIS System Management, Database Management, Strategic Planning, Best Practices and Workflow, Quality Management, Project Management and Risk Assessment & Uncertainty Evaluation. Further, he is also well-versed in seismic interpretation, mapping & reservoir modelling tools like Petrel software, LandMark, Seisworks, Geoframe, Zmap and has extensive knowledge in MSDos, Unix, AutoCAD, MAP, Overlay, Quicksurf, 3DStudio, Esri ArcGIS, Visual Lisp, Fortran-77 and Clipper. Moreover, he is a world expert in analysis and modelling of fractured prospects and reservoirs and a specialist and developer of fracture modelling software tools such as FPDM, FMX and DMX Protocols.

During his career life, Dr. Petrus held significant positions and dedication as the Executive Director, Senior Geoscience Advisor, Exploration Manager, Project Manager, Manager, Process Engineer, Mechanical Engineer, Maintenance Engineer, Chief Geologist, Chief of Exploration, Chief of Geoscience, Senior Geosciences Engineer, Senior Explorationist, Senior Geologist, Geologist, Senior Geoscientist, Geomodeller, Geoscientist, CPR Editor, Resources Auditor, Project Leader, Technical Leader, Team Leader, Scientific Researcher and Senior Instructor/Trainer from various international companies and universities such as the Dragon Oil Holding Plc., ENOC, MENA, ENI Group of Companies, Ocre Geoscience Services (OGS), Burren RPL, Ministry of Oil-Iraq, Eni Corporate University, Standford University, European Universities, European Research Institutes, NorskHydro Oil Company, Oil E&P Companies, just to name a few.

Dr. Petrus has a PhD in Geology and Tectonophysics and Master and Bachelor degrees in Earth Sciences from the Utrecht University, The Netherlands. Further, he is a Certified Instructor/Trainer, a Certified Trainer/Assessor/Internal Verifier by the Institute of Leadership & Management (ILM), a Secretary and Treasurer of Board of Directors of Multicultural Centre, Association Steunfonds SSH/SSR and Founding Member of Sfera Association. He has further published several scientific publications, journals, research papers and books and delivered numerous trainings, workshops, courses, seminars and conferences internationally.

PE1042-4D - Page 4 of 8

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day 1	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Overview of the Platforming Process
0830 - 0930	History and Development of Platforming Processes • Importance in the Refining
	Industry • Key Chemical Reactions Involved • Types of Platforming Processes
0930 - 0945	Break
	Basic Principles of Catalytic Reforming
0945 - 1045	Definition and Purpose • Catalyst Roles and Functions • Types of Reforming
	Catalysts • Reaction Kinetics and Thermodynamics
	Understanding the Continuous Catalyst Regeneration (CCR) System
1045 - 1145	Definition of CCR Platforming • Benefits of Continuous Regeneration •
1045 - 1145	Components of a CCR System • Comparison Between Semi-Regenerative and
	Continuous Systems
1145 - 1230	Catalyst Deactivation Mechanisms
1145 - 1250	Poisoning • Sintering • Coking • Leaching
1230 - 1245	Break
	Basics of Catalyst Performance & Regeneration
1245 – 1330	Catalyst Life Cycle • Regeneration Methods • Importance of Regular Catalyst
	Monitoring • Impact of Deactivation on Performance
	Process Flow Diagram (PFD) for CCR Platforming
1330 - 1420	Layout and Components of a CCR Unit • Key Equipment in the PFD • Stream and
	Flow Directions • Understanding Utility Systems Integration
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day One

PE1042-4D - Page 5 of 8

Day 2

0730 - 0830	Design of the CCR Reactor
	Types of CCR Reactors • Reactor Internals Design • Catalyst Bed Design • Heat
	Management in the Reactor
0830 - 0930	Reactor Operating Conditions
	Temperature, Pressure, and Flow Rate Specifications • Effect of Operating
0000 - 0000	Conditions on Catalyst Life • Control of Reaction Parameters • Optimization
	Strategies for Reactor Conditions
0930 - 0945	Break
	The Regeneration Process
0945 – 1130	Regeneration Cycle Design • Oxygenation of Catalyst • Regeneration Reaction
	Kinetics • Catalyst Regeneration Conditions
	Catalyst Bed Management
1130 - 1230	Bed Height and Catalyst Loading • Fluidization and Flow Distribution • In-Situ
	Catalyst Activity Monitoring • Handling Catalyst During Shutdowns
1230 - 1245	Break
	Heat & Mass Balance in CCR
1245 1220	Calculation of Heat Generation and Removal • Balancing Mass Flow in Reactor
1245 - 1330	and Regenerator • Effects of Heat Imbalance on Catalyst Activity • Understanding
	Thermal Management in CCR
	Troubleshooting Reactor Issues
1330 - 1420	Common Problems in Reactor Performance • Catalyst Poisoning Signs and
	Solutions • Addressing Pressure Drop Issues • Managing Fouling in Reactors
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Day 3

Day 3	
0730 – 0830	Control Systems in CCR Platforming Basic Control Systems Overview • Role of Distributed Control System (DCS) • Temperature, Pressure, and Flow Control • Reactor and Regenerator Control Schemes
0830 - 0930	<i>Automation of CCR Operations</i> Benefits of Automation in CCR Operations • Automation Strategies for Catalyst Regeneration • Real-Time Data Analysis and Decision Making • Automation Troubleshooting
0930 - 0945	Break
0945 - 1130	<i>Advanced Process Control (APC) for CCR</i> <i>Principles of APC in Platforming Units</i> • <i>Feedback and Feedforward Control Loops</i> • <i>Optimization Algorithms</i> • <i>Case Studies on APC Success</i>
1130 - 1230	<i>Instrumentation for Monitoring & Control</i> <i>Key Instruments Used in CCR Systems</i> • <i>Pressure, Temperature, and Flow</i> <i>Measurement Devices</i> • <i>Catalyst Activity Monitoring Instruments</i> • <i>Online</i> <i>Analyzers and Diagnostics</i>
1230 - 1245	Break

PE1042-4D - Page 6 of 8 PE1042-4D-06-25|Rev.00|16 April 2025

1245 - 1330	CCR Process Optimization
	Optimizing Catalyst Regeneration Cycles • Optimizing Product Yield and Quality
	Minimizing Downtime and Maintenance • Improving Overall Process Efficiency
1330 - 1420	Safety & Environmental Considerations
	Safety Hazards in CCR Platforming • Environmental Regulations and Compliance
	Managing Emissions and Waste Products • Safety Features in CCR Operations
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Three

Day 4

0730 - 0830	Advanced Catalyst Regeneration Techniques
	High-Temperature Regeneration • Advanced Coke Removal Methods • Use of
	Additives in Regeneration • Regeneration Cycle Extensions
	Troubleshooting Catalyst Issues
0830 - 0930	Identifying Signs of Catalyst Failure • Techniques to Handle Deactivation Issues •
0050 - 0550	Analyzing Catalyst Behavior Over Time • Implementing Catalyst Reactivation
	Methods
0930 - 0945	Break
	Energy Efficiency in CCR Platforming
0945 - 1045	Reducing Energy Consumption in the Reactor • Energy Recovery Methods • Heat
	Integration in the Platforming Process • Energy Balance in CCR Operations
	Advanced Process Troubleshooting
1045 - 1130	Diagnosing Operational Issues in Reactors and Regenerators • Common Faults in
1045 - 1150	Heat Exchangers and Reactors • Strategies to Address Cooling and Heating Issues
	Managing Off-Spec Product Quality
	Quality Control & Product Specifications
1130 – 1230	Controlling Octane Numbers • Managing Aromatics and Hydrogen Content •
	Impurities in Platforming Products • Product Specification Monitoring
1230 - 1245	Break
	Future Trends in CCR Platforming
1245 - 1345	Innovations in Catalyst Technology • Emerging Trends in Process Automation •
	Future Developments in Energy Efficiency • Sustainability in CCR Operations
	Course Conclusion
1345 – 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

PE1042-4D - Page 7 of 8

<u>Practical Sessions</u> This hands-on, highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

PE1042-4D - Page 8 of 8

