

COURSE OVERVIEW PE0102 Certified Process Plant Operator Program

Course Title

Certified Process Plant Operator Program

Course Date/Venue

January 12-16, 2025/Meeting Plus 8, City Centre Rotana Doha, Doha, Qatar

(30 PDHs)

Course Reference PE0102

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

The abnormal process situations cost the processing industry billions of dollars a year. 40% of this lost is directly attributable to human errors, with the failure to properly troubleshoot the condition being the leading contributor. The operations team is the first line of defense against process upsets and equipment problems. Failure to identify and resolve these situations quickly can lead to lost production, off-spec product, equipment loss, and even catastrophic accidents. Therefore, the ability to troubleshoot process operations is one of the most valuable skills operations personnel can possess. However, in order to troubleshoot the process or equipment, you have to understand the theory laying behind such process and equipment. This is what this course all about.

The course is designed to provide participants with the proper application, operation, maintenance and troubleshooting of the various types of process equipment such as compressors, pumps, motors, turbines, turbo-expanders, gears, heat exchangers, piping systems, distillation columns, reboilers, pressure vessels and valves.

PE0102 - Page 1 of 14

The course will feature a unique blend of practical application experience and basic analysis methods. Its aim is to convey a thorough understanding of equipment operating principles and troubleshooting techniques.

The course covers the various process control and instrumentation methods such as pressure measurement, level measurement, temperature measurement, flow measurement, basic principles of control systems, P&ID, wiring schematics & diagrams, control valves and process considerations. It will equip participants with the basic tools and techniques for troubleshooting real-world problems. The use of the troubleshooting methodology defined in this course can greatly improve the ability of the operations team to troubleshoot effectively. With an improved understanding of troubleshooting principles, you will be better equipped to react to process upsets in order to prevent downtime and/or accidents.

The course includes a comprehensive e-book entitled "Operator's Guide to Rotating Equipment: An Introduction to Rotating Equipment Construction, Operating Principles, Troubleshooting and Best Practices", published by AuthorHouse, which will be given to the participants to help them appreciate the principles presented in the course.

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Get certified as a "Certified Process Plant Operator"
- · Apply a comprehensive knowledge and skills in process operations, process control and troubleshooting techniques
- Operate, maintain and troubleshoot process equipment such as centrifugal pumps, positive displacement & vacuum pumps, centrifugal compressors, displacement compressors, steam turbine & expanders, gas turbines & engines, fan & blowers, etc.
- Identify and differentiate various types of electric motors, gears & transmission equipment, heat exchangers, distillation columns, reboilers, condensers and explain how trays work
- Discuss the piping layout and components including the piping arrangements, specifications, fittings, etc.
- Distinguish the various measurement in process control such as pressure measurement. level measurement, temperature measurement and flow measurement and differentiate their corresponding principles
- Recognize the principles of control valves including its body types, cavitation, valve coefficient and characteristics and list the main types of actuators and accessories
- Apply systematic techniques in troubleshooting process operations and carryout successful troubleshooting activities
- Analyze the mental problem-solving process and demonstrate the use of the troubleshooter's worksheet
- Practice the rules-of-thumb techniques for troubleshooting of process equipment

PE0102 - Page 2 of 14

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides a wide understanding and deeper appreciation of process plant operations and control for technical and operational staff.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures 20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 6,000 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

In addition to the Course Manual, participants will receive an e-book "Operator's Guide to Rotating Equipment: An Introduction to Rotating Equipment Construction, Operating Principles, Troubleshooting and Best Practices", published by Author House.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

PE0102 - Page 3 of 14

Course Certificate(s)

(1) Internationally recognized Competency Certificates and Plastic Wallet Cards will be issued to participants who completed a minimum of 80% of the total tuition hours and successfully passed the exam at the end of the course. Successful candidate will be certified as a "Certified Process Plant Operator". Certificates are valid for 5 years.

Sample of Certificates

The following are sample of the certificates that will be awarded to courses participants: -

PE0102 - Page 4 of 14

PE0102-01-25|Rev.457|22 November 2024

in

AWS

(2) Official Transcript of Records will be provided to the successful delegates with the equivalent number of ANSI/IACET accredited Continuing Education Units (CEUs) earned during the course.

	Continuing Professional Dev			
	CEU Official Trans	cript of Recor	as	
TOR Issuance Date	74851			
Participant Name:	Waleed Al Habeeb			
Program Ref.	Program Title	Program Date	No. of Contact Hours	CEU's
			1	
Total No. of CEU'	s Earned as of TOR Issuance Date		30	3.0
Total No. of CEU'	s Earned as of TOR Issuance Date		TRUE COPY	3.0
Total No. of CEU	s Earned as of TOR Issuance Date		TRUE COPY	3.0
Total No. of CEU	s Earned as of TOR Issuance Date		TRUE COPY Jaryl Castillo cademic Director	3.0
			Jaryl Castillo cademic Director	
Haward Technology (IACET), 2201 Coope with the ANSI/IACET	s Earned as of TOR Issuance Date	the International Association for Cc g this approval, Haward Technology andard of good practice internationally	Jaryl Castillo cademic Director	Training complies thorized
Haward Technology (IACET), 2201 Coope with the ANSI/IACET Provider membership Standard. Haward Technology's Education Units (CEL IACET is an internati	has been approved as an Accredited Provider by rative Way, Suite 600, Herndon, VA 20171, USA. In obtainin '1-2018 Standard which is widely recognized as the s is status, Haward Technology is authorized to offer IA	the International Association for Cc g this approval, Haward Technology andard of good practice internationality CET CEUs for programs that qualify pontinuing education requirements for remational Association for Continuing	Jaryl Castillo cademic Director ntinuing Education and has demonstrated that it of . As a result of their A. . under the ANSI/IACE1 participants seeking Co Education & Training (C	Training complies thorized f 1-2018 intinuing (ACET).
Haward Technology (IACET), 2201 Coope with the ANSI/IACET Provider membership Standard. Haward Technology's Education Units (CEL IACET is an internati	has been approved as an Accredited Provider by rative Way, Suite 600, Herndon, VA 20171, USA. In obtainin 7 1-2018 Standard which is widely recognized as the si o status, Haward Technology is authorized to offer IA is courses meet the professional certification and co (s) in accordance with the rules & regulations of the Inti onal authority that evaluates programs according to strice	the International Association for Cc g this approval, Haward Technology andard of good practice internationality CET CEUs for programs that qualify pontinuing education requirements for remational Association for Continuing	Jaryl Castillo cademic Director ntinuing Education and has demonstrated that it of . As a result of their A. . under the ANSI/IACE1 participants seeking Co Education & Training (C	Training complies thorized f 1-2018 intinuing (ACET).
Haward Technology (IACET), 2201 Coope with the ANSI/IACET Provider membership Standard. Haward Technology's Education Units (CEL IACET is an internati	has been approved as an Accredited Provider by rative Way, Suite 600, Herndon, VA 20171, USA. In obtainin 7 1-2018 Standard which is widely recognized as the si o status, Haward Technology is authorized to offer IA is courses meet the professional certification and co (s) in accordance with the rules & regulations of the Inti onal authority that evaluates programs according to strice	the International Association for Cc g this approval, Haward Technology andard of good practice internationality CET CEUs for programs that qualify pontinuing education requirements for remational Association for Continuing	Jaryl Castillo cademic Director ntinuing Education and has demonstrated that it of . As a result of their A. . under the ANSI/IACE1 participants seeking Co Education & Training (C	Training complies thorized f 1-2018 intinuing (ACET).

PE0102 - Page 5 of 14 PE0102-01-25|Rev.457|22 November 2024

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

Accredited The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

PE0102 - Page 6 of 14

Course Instructor

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Andrew Ladwig is a Senior Process & Mechanical Engineer with over 25 years of extensive experience within the Oil & Gas, Refinery, Petrochemical & Power industries. His expertise widely covers in the areas of Ammonia Manufacturing & Process Troubleshooting, Distillation Towers, Crude Oil Distillation, Fundamentals of Distillation for Engineers, Distillation Operation and Troubleshooting, Advanced Distillation Troubleshooting, Distillation Technology, Vacuum Distillation, Ammonia Storage & Loading Systems, Ammonia Plant Operation, Troubleshooting & Optimization, Ammonia Recovery, Ammonia Plant Safety, Hazard of Ammonia Handling, Storage & Shipping, Operational Excellence in Ammonia Plants, Fertilizer Storage

Management (Ammonia & Urea), Fertilizer Manufacturing Process Technology, Sulphur Recovery, Phenol Recovery & Extraction, Wax Sweating & Blending, Petrochemical & Fertilizer Plants, Nitrogen Fertilizer Production, Petroleum Industry Process Engineering, Refining Process & Petroleum Products, Refinery Planning & Economics, Safe Refinery Operations, Hydrotreating & Hydro-processing, Separators in Oil & Gas Industry, Gas Testing & Energy Isolations, Gas Liguor Separation, Industrial Liquid Mixing, Wax Bleachers, Extractors, Fractionation, Operation & Control of Distillation, Process of Crude ATM & Vacuum Distillation Unit, Water Purification, Water Transport & Distribution, Steam & Electricity, Flame Arrestors, Coal Processing, Environmental Emission Control, R&D of Wax Blending, Wax Molding/Slabbing, Industrial Drying, Principles, Selection & Design, Certified Process Plant Operations, Control & Troubleshooting, Operator Responsibilities, Tank Farm Operations, Storage Tanks Operations & Measurements, Process Plant Troubleshooting & Engineering Problem Solving, Process Plant Performance, Efficiency & Optimization, Continuous Improvement & Benchmarking, Process Troubleshooting Techniques, Oil & Gas Operation/Introduction to Surface Facilities, Pressure Vessel Operation, Process Equipment Performance & Troubleshooting, Plant Startup & Shutdown, Startup & Shutdown the Plant While Handling Abnormal Conditions, Flare & Relief System, Process Gas Plant Start-up, Commissioning & Problem Solving, Process Liquid and Process Handling & Measuring Equipment. Further, he is also well-versed in Compressors & Turbines Operation, Maintenance & Troubleshooting, Heat Exchanger Overhaul & Testing Techniques, Balancing of Rotating Machinery (BRM), Pipe Stress Analysis, Valves & Actuators Technology, Inspect & Maintain Safeguarding Vent & Relief System, Certified Inspectors for Vehicle & Equipment, Optimizing Equipment Maintenance & Replacement Decisions, Certified Maintenance Planner (CMP), Certified Planning and Scheduling Professional (AACE-PSP), Tank Design, Construction, Inspection & Maintenance, Material Cataloguing, Specifications, Handling & Storage, Steam Trap Design, Operation, Maintenance & Troubleshooting, Steam Trapping & Control, Column, Pump & Exchangers, Troubleshooting & Design, Rotating Equipment Operation & Troubleshooting, Control & ESD System, Detailed Engineering Drawings, Codes & Standards, Budget Preparation, Allocation & Cost Control, Root Cause Analysis (RCA), Production Optimization, Permit to Work (PTW), Project Engineering, Data Analysis, Process Hazard Analysis (PHA), HAZOP Study, Sampling & Analysis, Training Analysis, Job Analysis Techniques, Storage & Handling of Toxic Chemicals & Hazardous Materials, Hazardous Material Classification & Storage/Disposal, Dangerous Goods, Environmental Management System (EMS), Supply Chain, Purchasing, Procurement, Logistics Management & Transport & Warehousing & Inventory, Risk Monitoring Authorized Gas Tester (AGT), Confined Space Entry (CSE), Personal Protective Equipment (PPE), Fire & Gas, First Aid and Occupational Health & Safety.

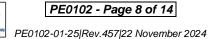
During his career life, Mr. Ladwig has gained his practical experience through his various significant positions and dedication as the Mechanical Engineer, Project Engineer, Reliability & Maintenance Engineer, Maintenance Support Engineer, Process Engineer, HSE Supervisor, Warehouse Manager, Quality Manager, Business Analyst, Senior Process Controller, Process Controller, Safety Officer, Mechanical Technician, Senior Lecturer and Senior Consultant/Trainer for various companies such as the Sasol Ltd., Sasol Wax, Sasol Synfuels, just to name a few.

Mr. Ladwig has a Bachelor's degree in Chemical Engineering and a Diploma in Mechanical Engineering. Certified Instructor/Trainer, Certified Internal Further, he is а а Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and has delivered various trainings, workshops, seminars, courses and conferences internationally.

PE0102 - Page 7 of 14

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:


Day 1:	Sunday, 12 th of January 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Introduction to Process Plant
0830 - 0915	Process Overview • Plant Types • Plant Layout • Process Equipment • Piping
	System
	Centrifugal Pumps
0915 – 1000	Configurations & Styles • Application Ranges and Constraints • Construction
	Features & Options • Pump Auxiliaries • Wear Components • Canned Motor
	& Magnetic Drive Pumps • High Speed/Low Flow Pumps • Servicing &
1000 1015	Condition Monitoring Operation Control Troubleshooting Break
1000 - 1015	
	Positive Displacement & Vacuum Pumps Reciprocating Steam & Power Pumps • Diaphragm Pumps • Plunger Pumps •
1015 – 1100	Gear Screw & Progressive Cavity Pumps • Peristaltic Pumps • Conventional &
1015 - 1100	Special Vacuum Pumps • Liquid Jet & Liquid Ring Pumps • Combination &
	Staged Vacuum Pumps • Operation • Control • Troubleshooting
	Centrifugal Compressors
	Types, Styles & Configurations of Centrifugal & Axial Compressors •
1100 – 1215	Construction Features • Mode of Operation • Compressor Auxiliaries and
	Support Systems • Condition Monitoring • Application Criteria • Performance
	<i>Capabilities & Limitations</i> • <i>Operation</i> • <i>Control</i> • <i>Troubleshooting</i>
1215 – 1230	Break
	Displacement Compressors
1230 – 1330	Classification • Reciprocating Compressors vs. Rotary Screw Compressors •
1200 1000	Application Ranges & Limitations
	<i>Features & Components</i> • <i>Capacity Control</i> • <i>Operation</i> • <i>Troubleshooting</i>
1330 - 1420	Steam Turbines & Expanders
	Impulse Turbines • Reaction Turbines • Application Ranges • Turbine
	Configurations • Applications Constraints • Maintenance • Turbo-expander
	<i>Construction Features</i> • <i>Applications</i> • <i>Operation</i> • <i>Control</i> • <i>Troubleshooting</i>
	<i>Recap</i> Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 – 1430	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day One
	J = J = J

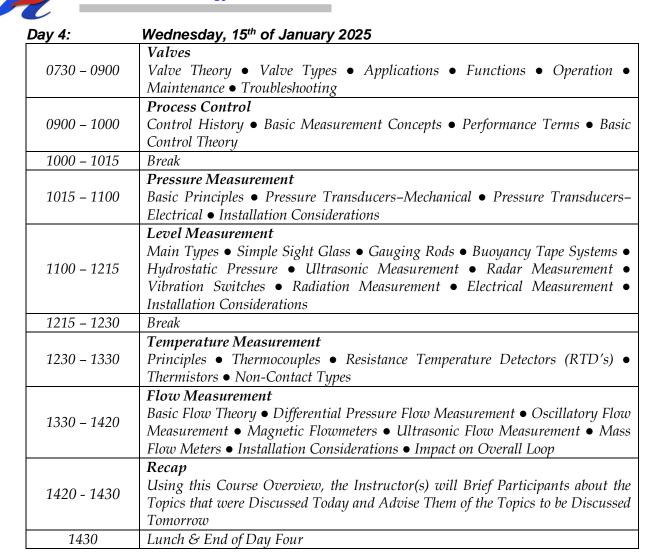
Day 2:	Monday, 13 th of January 2025
0730 - 0900	<i>Gas Turbines & Engines</i> Simple Cycle • Heat Recovery Cycles • Type Selection • Maintenance • Two- & Four-Cycle Gas Engines • Gas Engine Compressor Auxiliary Systems • Operation • Control • Troubleshooting
0900 - 1000	Fans and Blowers Types & Configurations • Performance & System Effects • Performance Correction • Capacity Control Options • Operation • Troubleshooting
1000 - 1015	Break

iosh

ilm

IACET

1015 – 1100	Electric Motors
	Design • Controls • Wiring Systems • Standard Motors • Special Designs •
	Major Components • The Motor as Part of a System • Adjustable Frequency
	Motors • Operation • Control • Troubleshooting
1100 - 1215	Gears & Transmission Equipment
	<i>Types of Gears</i> • <i>Applications Constraints</i> • <i>Maintenance</i> • <i>Troubleshooting</i>
1215 – 1230	Break
	Heat Exchangers
1230 – 1330	<i>Heat Exchangers</i> • <i>Shell-&-Tube Exchangers</i> • <i>Double-Pipe Exchangers</i> • <i>Plate-</i>
1230 - 1330	&-Frame Exchangers • Aerial Coolers • Fired Heater • Heat Recovery Units •
	<i>Heat Exchanger Example Problem</i> • <i>Operation</i> • <i>Control</i> • <i>Troubleshooting</i>
	Distillation Column
1330 - 1420	<i>Flash Stages</i> • <i>Process Design Basic</i> • <i>Reflux Ratio</i> • <i>Minimum Reflux Ratio</i> •
	Minimum Number of Plates • Optimum Reflux
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today & Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

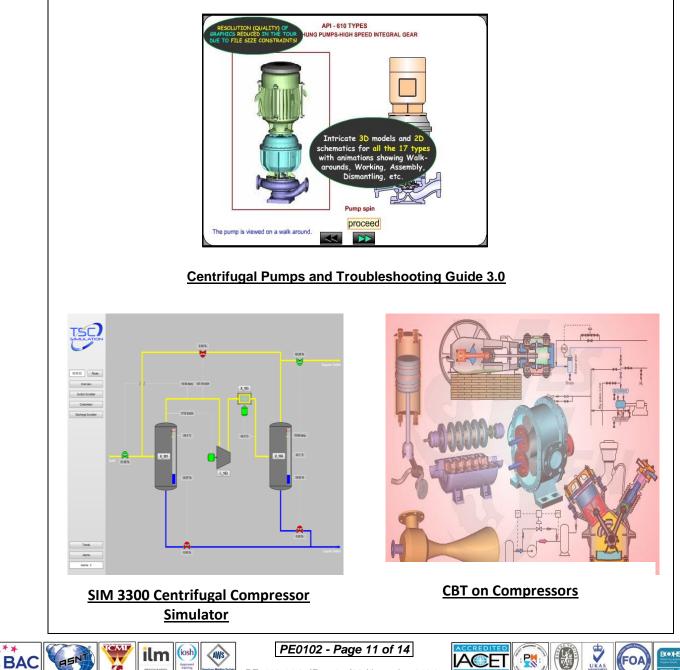

Day 3:	Tuesday, 14 th of January 2025
0730 - 0900	<i>How Trays Work</i> <i>Down Common Backup & Flooding • Dumping & Weeping • Optimizing Tower</i>
	Pressure
0900 - 1000	Reboilers Pabailars Function • The Pabailar • Heat Palance Calculations • Thermoeurahou
	Reboilers Function • The Reboiler • Heat-Balance Calculations • Thermosyphon, Gravity Feed, & Forced • Thermosyphon Reboilers • Forced Circulation
	Reboilers • Kettle Reboilers • Don't Forget Fouling
1000 - 1015	Break
	Condensers
1015 – 1100	Flooded Condenser Control • Subcooling, Vapor Binding, & Condensation •
	Condensation and Condenser Design Pressure Control
1100 – 1215	Introduction to Piping Layout
	<i>P&ID's</i> ● <i>Piping Arrangements</i> ● <i>Isometrics</i> ● <i>B.O.M.'s</i> ● <i>Piping Specifications</i>
1215 - 1230	Break
1230 - 1330	Piping Components & Valves
1230 - 1330	<i>Fittings – Butt Weld • Socket Weld • Threaded, Valve Types and Application</i>
1330 - 1420	Process & Utility Piping
	Design & Layout of Piping Containing Liquid • Vapour • Steam • Condensate
	● Slurries ● Etc.
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today & Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Three

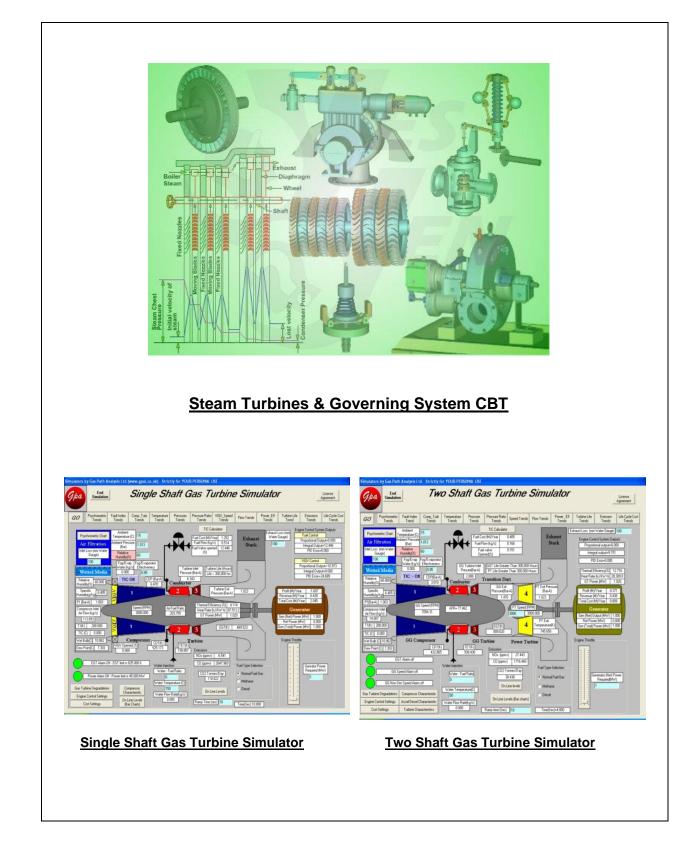
PE0102 - Page 9 of 14

Haward Technology Middle East

Day 5:	Thursday, 16 th of January 2025
	Control Valves-Body Types
	Principles of Control Valves • What Happens Inside a Control Valve? • Choked
0730 – 0900	Flow • Cavitation • Flashing • Valve Coefficient (Cv) • Control Valve Types •
	<i>Valve Characteristics</i> • <i>Trim Characteristics</i> • <i>Control Valve Selection</i> • <i>Leakage</i>
	Rates
	Control Valves-Actuators & Accessories
0900 - 1000	Main Types of Actuators • Linear Actuators • Rotary Actuators • Actuator
	Forces • Positioners • Fail Safe Actuators
1000 - 1015	Break
	P & ID, Wiring Schematics & Diagrams
1015 1100	Block Flow Diagrams • Process Flow Diagrams • Mass Balance • Piping &
1015 – 1100	Installation Diagrams • P & ID Symbols • HAZOP • P & ID Standards •
	Valves • Standardization of Symbols • Schedules • Layout Drawings
	What is Troubleshooting?
1100 – 1215	Characteristics of a Troubleshooting Problem • Characteristics of the Process
	Used to Solve Troubleshooting Problems
1215 – 1230	Break
	The Mental Problem-Solving Process
1230 - 1245	Problem Solving • Troubleshooting • Overall Summary of Major Skills & a
	<i>Worksheet</i> • <i>Example Use of the Trouble-shooter's Worksheet</i>

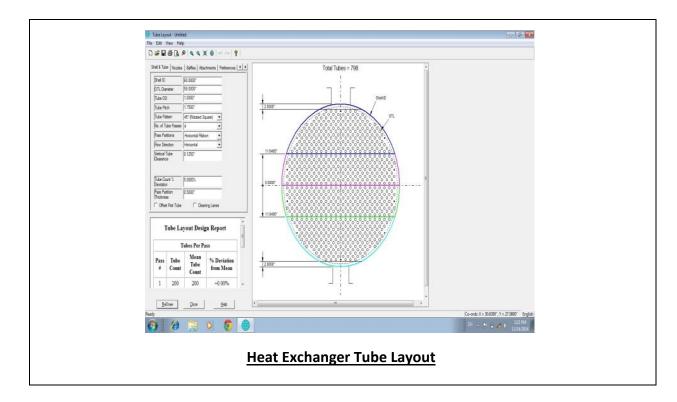
PE0102 - Page 10 of 14

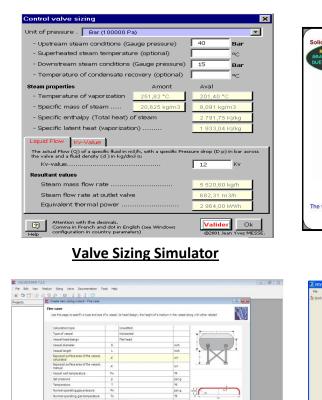



	Rules of Thumb for Troubleshooting
	Overall • Transportation Problems • Energy Exchange • Homogenous
1245 – 1300	Separation • Heterogenous Separations • Reactor Problems • Mixing Problems
	• Size-Decrease Problems • Size Enlargement • Vessels, Bins, Hoppers &
	Storage Tanks • "Systems" Thinking • Health, Fire & Stability
	Course Conclusion
1300 - 1315	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1315 - 1415	COMPETENCY EXAM
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

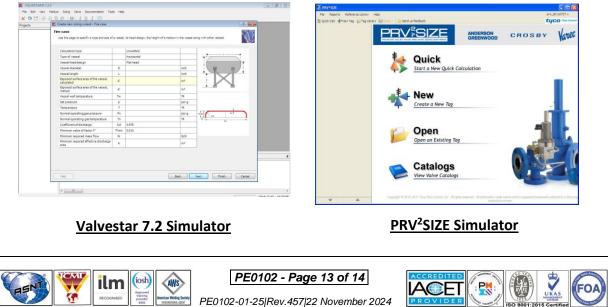
Simulator (Hands-on Practical Sessions)

Practical session will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the state-of-the-art simulators.





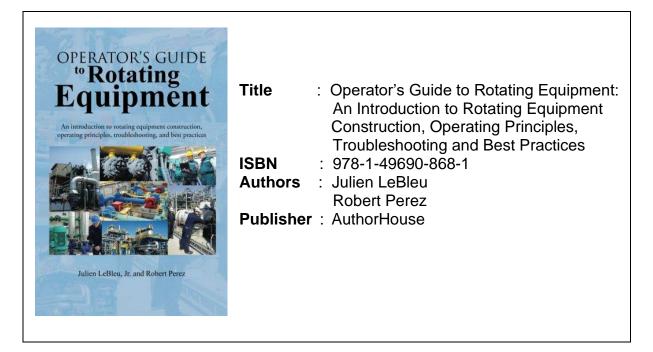
PE0102 - Page 12 of 14

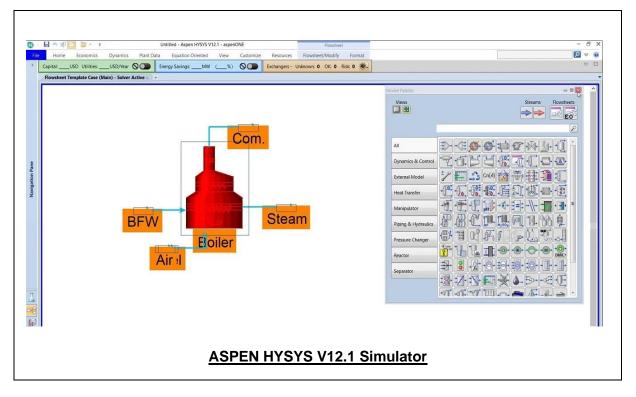


Approved training provider 4992

BAC

VALVE TYPES RISING STEM GATE VALVES d 2D/30 Valve spin The valve is viewed on a walk around *


Valve Simulator 3.0



Book(s)

As part of the course kit, the following e-book will be given to all participants:

Course Coordinator

Reem Dergham, Tel: +974 4423 1327, Email: reem@haward.org

PE0102 - Page 14 of 14

