

COURSE OVERVIEW PE1048 Low Carbon Hydrogen Production and Distribution

Course Title

Low Carbon Hydrogen Production and Distribution

CEUS

Course Reference

PE1048

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Date/Venue

Session(s)	Date	Venue
1	May 12-16, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
2	July 20-24, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
3	October 13-17, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
6	December 14-18, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Low Carbon Hydrogen Production and Distribution. It covers the s hydrogen basics, global hydrogen roadmaps and policy trends; the drivers and barriers for hydrogen deployment and hydrogen value chain; the hydrogen safety and risk management and steam methane reforming with carbon capture; the electrolysis-based green hydrogen production, biomass and waste-to-hydrogen technologies and methane pyrolysis for turquoise hydrogen; and the nuclear hydrogen and high-temperature electrolysis and comparative analysis of hydrogen production pathways.

During this interactive course, participants will learn the hydrogen compression and pipeline transport, hydrogen liquefaction and cryogenic storage and hydrogen carriers and chemical storage; the hydrogen refueling infrastructure for mobility, hydrogen storage for industrial and power use and distribution strategy and logistics planning; the industrial applications of hydrogen, hydrogen in power generation and grid support and hydrogen mobility; the techno-economic analysis of hydrogen projects and environmental and social life cycle assessment; the hydrogen energy systems integration, digital tools and smart hydrogen infrastructure; the hydrogen project development and risk management; and the hydrogen economics in emerging markets.

PE1048 - Page 1 of 8

PE1048-05-25|Rev.479|17 April 2025

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Apply and gain a good working knowledge on low carbon hydrogen production and distribution
- Discuss hydrogen basics and its role in energy transition and the classification of low carbon hydrogen
- Review global hydrogen roadmaps and policy trends, drivers and barriers for hydrogen deployment and hydrogen value chain
- Apply hydrogen safety and risk management and discuss steam methane reforming with carbon capture
- Describe electrolysis-based green hydrogen production, biomass and waste-tohydrogen technologies and methane pyrolysis for turquoise hydrogen
- Explain nuclear hydrogen and high-temperature electrolysis and apply comparative analysis of hydrogen production pathways
- Discuss hydrogen compression and pipeline transport, hydrogen liquefaction and cryogenic storage and hydrogen carriers and chemical storage
- Determine hydrogen refueling infrastructure for mobility, hydrogen storage for industrial and power use and distribution strategy and logistics planning
- Carryout industrial applications of hydrogen and discuss hydrogen in power generation and grid support and hydrogen mobility in road, rail, maritime and aviation
- Employ techno-economic analysis of hydrogen projects and environmental and social life cycle assessment
- Integrate hydrogen energy systems and identify digital tools and smart hydrogen infrastructure
- Apply hydrogen project development and risk management and discuss hydrogen economics in emerging markets

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of low carbon hydrogen production and distribution for energy transition & sustainability professionals, chemical and process engineers, project managers in renewable energy, oil & gas industry professionals, policy makers & regulators, utility and grid operators, R&D scientists and technologists, environmental consultants and analysts, transport & logistics professionals, equipment manufacturers & suppliers, investors and financial analysts.

PE1048 - Page 2 of 8

PE1048-05-25|Rev.479|17 April 2025

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

• B/

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

ACCREDITED The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

<u>Course Fee</u>

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

PE1048 - Page 3 of 8

PE1048-05-25|Rev.479|17 April 2025

ilm

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Dimitry Rovas, CEng, MSc, PMI-PMP, is a Senior Engineer with extensive industrial experience in Oil, Gas, Power and Utilities industries. His expertise includes Gas Conditioning & Processing, Process Plant Optimization, Effective Production Operations in the Oil & Gas Fields, Advanced Process Safety Management (PSM), Process Equipment Design, Applied Process Engineering, Oil Production & Processing Facilities, Process Plant Optimization & Rehabilitation, Process Plant Troubleshooting & Engineering Problem Solving, Operations Abnormalities & Plant Upset, Glass

Reinforced Plastics, GRP Resins, Pipe Products & Applications, Pipe System Designs & Installation, Steel & Fiberglass Construction, GRP Linings & Method Application, Rubber Compounding, Elastomers, Thermoplastic, Industrial Rubber Products, Rubber Manufacturing Systems, Heat Transfer, Vulcanization Methods, Energy Conservation, Energy Loss Management in Electricity Distribution Systems, Energy Saving, Thermal Power Plant Management, Thermal Power Plant Operation & Maintenance, Gas & Steam Turbines, Turbine Operations, Heat Transfer, Machine Design, Fluid Mechanics, Heating & Cooling Systems, Heat Insulation Systems, Heat Exchanger & Cooling Towers, Mechanical Erection, Heavy Rotating Equipment, HAZMAT & HAZCOM, Hazardous Materials & Chemicals MSDS, Modern Heating, Ventilation, Air-Conditioning (HVAC) & Refrigeration Systems, Emergency Air Compressors, Gas Turbine Condition Monitoring & Fault Diagnosis, Modern Valve Technology, Pumps & Valves, Detailed Engineering Codes & Standards, Hydraulic System Overhaul & Troubleshooting, Hydraulic System Design & Troubleshooting, Boiler Maintenance & Inspection, Pipe Stress Analysis, Material Unloading & Storage, Commissioning & Start-Up. Further, he is also well-versed in MS project & AutoCAD, EPC Power Plant, Power Generation, Combined Cycle Powerplant, Leadership Mentoring, & Project Management, Strategic Planning/Analysis, Construction Management, Team Formation, Relationship Building, Communication, Reporting and Six Sigma. He was the **Project Manager** wherein he was managing, directing and controlling all activities and functions associated with the domestic heating/cooling facilities projects.

During his life career, Mr. Rovas has gained his practical and field experience through his various significant positions and dedication as the EPC Project Manager, Field Engineer, Preventive Maintenance Engineer, Researcher, Instructor/Trainer, **Telecom Consultant** and **Consultant** from various companies such as the Podaras Engineering Studies, Metka and Diadikasia, S.A., Hellenic Petroleum Oil Refinery and COSMOTE.

Mr. Rovas is a **Chartered Engineer** of the **Technical Chamber** of **Greece**. Further, he has Master degrees in Mechanical Engineering and Energy Production & Management from the National Technical University of Athens. Moreover, he is a Certified Instructor/Trainer, a Certified Project Management Professional (PMP), a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and a Certified Six Sigma Black Belt. He is an active member of Project Management Institute (PMI), Technical Chamber of Greece and Body of Certified Energy Auditors and has further delivered numerous trainings, seminars, courses, workshops and conferences internationally.

iosh

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Hydrogen Basics & Its Role in Energy Transition
0830 - 0930	Physical and Chemical Properties of Hydrogen • Comparison with Other
	Energy Carriers • Hydrogen in Decarbonization Pathways • Current
	Hydrogen Market Overview
0930 - 0945	Break
	Low Carbon Hydrogen: Definitions & Classifications
0945 - 1045	Grey, Blue, Green, Turquoise, Pink Hydrogen • Carbon Intensity Metrics and
0945 - 1045	Emissions Boundaries • Low Carbon Thresholds and Regulatory Criteria •
	Certification Schemes and Color Taxonomy
	Global Hydrogen Roadmaps & Policy Trends
1045 - 1130	International Strategies (EU, Japan, USA, GCC, etc.) • Hydrogen Alliances
1045 - 1150	and Global Cooperation • National Hydrogen Programs and Funding
	Mechanisms • Future Market Outlook and Projections
	Drivers & Barriers for Hydrogen Deployment
1130 – 1230	Climate and Environmental Drivers • Economic and Technological Hurdles •
	Infrastructure and Policy Gaps • Social and Regulatory Acceptance
1230 – 1245	Break
	Hydrogen Value Chain Overview
1245 - 1330	Production Technologies and Classification • Transportation and Storage
1245 - 1550	Methods • Hydrogen Applications (Industry, Mobility, Power) • Value Chain
	Integration Challenges
1330 - 1420	Hydrogen Safety & Risk Management
	Flammability and Explosion Risks • Leak Detection Technologies • Codes,
	Standards, and Certifications (ISO, IEC) • Safety in Transport and Storage
1420 -1430	Recap
	Using this Course Overview, the instructor(s) will Brief Participants about the
	<i>Topics that were Discussed Today & Advise Them of the Topics to be Discussed</i>
	Tomorrow
1430	Lunch & End of Day One

PE1048 - Page 5 of 8 PE1048-05-25|Rev.479|17 April 2025

Day 2	
	Steam Methane Reforming (SMR) with Carbon Capture
0730 - 0830	SMR Process Fundamentals • Carbon Capture Technologies (MEA, PSA,
	Membranes) • Process Integration for Blue Hydrogen • Emission Factors and
	<i>Cost Implications</i>
	Electrolysis-Based Green Hydrogen Production
0830 - 0930	Alkaline vs PEM versus SOEC Electrolysis • Renewable Energy Integration
0050 - 0950	(Solar, Wind, Hydro) • System Components and Energy Requirements •
	Efficiency and Degradation Aspects
0930 - 0945	Break
	Biomass & Waste-to-Hydrogen Technologies
0945 – 1100	Gasification and Pyrolysis Techniques • Feedstock Characteristics and
	Availability • Life Cycle Carbon Intensity • Techno-Economic Assessment
	Methane Pyrolysis for Turquoise Hydrogen
1100 – 1230	Process Overview and Solid Carbon By-Product • Reactor Types and Material
1100 - 1250	Handling • Energy Balance and Emission Profile • Current Research and Pilot
	Projects
1230 - 1245	Break
	Nuclear Hydrogen & High-Temperature Electrolysis
1245 – 1330	Role of Nuclear in Hydrogen Production • Thermochemical Water Splitting
1245 - 1550	Cycles • Safety, Policy, and Public Perception • Deployment Potential and
	Cost Analysis
	Comparative Analysis of Hydrogen Production Pathways
1330 - 1420	<i>Cost per kg of Hydrogen</i> • <i>Carbon Intensity of Each Pathway</i> • <i>Scalability and</i>
	Infrastructure Needs • Regional Resource Suitability
	Recap
1420 - 1430	Using this Course Overview, the instructor(s)will Brief Participants about the
	Topics that were Discussed Today & Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Day 3

	Hydrogen Compression & Pipeline Transport	
0730 - 0830	Compression Technologies and Energy Use • Dedicated vs Blended Pipelines •	
	Material Compatibility and Embrittlement • Leakage and Monitoring Systems	
	Hydrogen Liquefaction & Cryogenic Storage	
0830 - 0930	Liquefaction Process and Technologies • Storage Vessels and Insulation	
	Systems • Boil-Off Gas and Management Strategies • Applications and	
	Challenges	
0930 - 0945	Break	
0945 - 1100	Hydrogen Carriers & Chemical Storage	
	Ammonia, LOHCs, and Metal Hydrides • Transport Economics and	
	Reversibility • Dehydrogenation Processes • Safety and Handling	
	Considerations	
	Hydrogen Refueling Infrastructure for Mobility	
1100 – 1230	Refueling Station Components and Operation • Vehicle Interface and Safety	
	Protocols • Standardization and Interoperability • Deployment Case Studies	
1230 - 1245	Break	
	Hydrogen Storage for Industrial & Power Use	
1245 – 1330	Salt Caverns and Underground Storage • Above-Ground Pressurized Tanks •	
	Grid Balancing and Seasonal Storage • Hydrogen as Energy Backup Solution	

 Image: PE1048 - Page 6 of 8

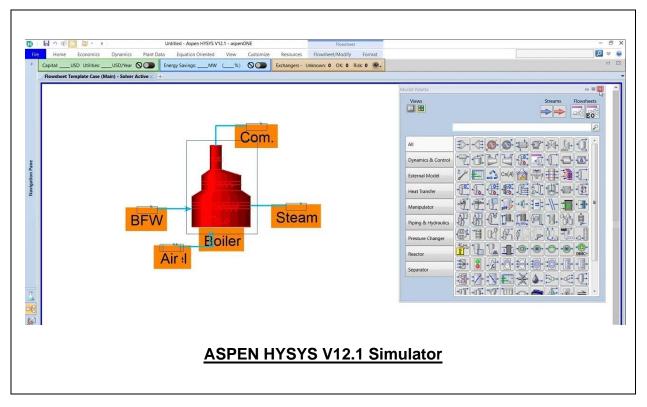
 Image: PE1048 - Page 7

1330 - 1420	Distribution Strategy & Logistics Planning Regional Hydrogen Hubs and Clusters • Transport Modes: Trucks, Ships, Pipelines • Infrastructure Layout and Investment Needs • Digital Tools and Hydrogen Logistics
1420 - 1430	Recap Using this Course Overview, the instructor(s)will Brief Participants about the Topics that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

	Industrial Applications of Hydrogen
0730 - 0830	Refineries and Ammonia Production • Steel and Cement Industry
	Decarbonization • Methanol and Synthetic Fuels • Retrofit vs New Process
	Lines
	Hydrogen in Power Generation & Grid Support
0830 - 0930	Hydrogen Turbines and Fuel Cells • Backup Power and Microgrids • Blending
	in Gas Turbines • Integration into Power-to-Gas Schemes
0930 - 0945	Break
	Hydrogen Mobility: Road, Rail, Maritime, Aviation
0945 - 1100	Fuel Cell Vehicles and Fleets • Hydrogen Trains and Heavy-Duty Trucking •
0040 - 1100	Maritime Fuel Potential and Bunkering • Hydrogen in Aviation and Air
	Mobility
	Techno-Economic Analysis of Hydrogen Projects
1100 – 1230	Levelized Cost of Hydrogen (LCOH) • CAPEX and OPEX Considerations •
1100 1200	Sensitivity Analysis (Energy Price, Scale) • Economic Incentives and Carbon
	Pricing
1230 – 1245	Break
	Environmental & Social Life Cycle Assessment
1245 – 1330	Cradle-to-Grave GHG Emissions • Water Use and Resource Constraints •
	Social Acceptance and Community Impacts • Hydrogen Sustainability Metrics
	Carbon Accounting & Hydrogen Certification
1330 – 1420	Carbon Intensity Calculation Frameworks • Book and Claim Systems •
1000 1120	Guarantee of Origin and Hydrogen Labeling • Regulatory Compliance and
	Disclosure
1420 - 1430	Recap
	Using this Course Overview, the instructor(s) will Brief Participants about the
	Topics that were Discussed Today & Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four

Day 5


	Integrated Hydrogen Energy Systems
0730 - 0830	Sector Coupling (Industry, Power, Transport) • Smart Grid and Demand-Side
0750 - 0050	Integration • Hydrogen and Renewable Synergies • Systems Modeling and
	Optimization
	Digital Tools & Smart Hydrogen Infrastructure
0830 - 0930	IoT in Hydrogen Plants and Pipelines • AI/ML for Predictive Maintenance •
0830 - 0930	SCADA and Control Systems for Safety • Blockchain for Hydrogen
	Traceability
0930 - 0945	Break
BAC C FOA	Image: Second

	Hydrogen Project Development & Risk Management
0945 - 1045	Feasibility and Front-End Engineering • Stakeholder Engagement and
	Permitting • Risk Identification and Mitigation Plans • Case Studies and
	Lessons Learned
	Hydrogen Economics in Emerging Markets
1045 - 1130	MENA Hydrogen Export Strategies • Hydrogen Diplomacy and Trade Routes
	• Local Workforce and Supply Chain Development • Financing Models and
	PPPs
	Case Studies of Operational Hydrogen Projects
1130 – 1230	Japan's Fukushima Hydrogen Energy Research Field • Germany's Hydrogen
1150 - 1250	Valleys • UAE's Masdar and NEOM Projects • Lessons from Pilot to
	Commercial Scale
1230 - 1245	Break
	Future Outlook & Innovation in Hydrogen Technologies
1245 - 1345	Solid Oxide Fuel Cells and New Materials • Hybrid Production Systems •
1245 - 1545	Hydrogen from Ocean and Geothermal Sources • Next-Gen Mobility and
	Infrastructure
1345 - 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical session will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the state-of-the-art simulators "ASPEN HYSYS" simulator.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

PE1048 - Page 8 of 8 PE1048-05-25|Rev.479|17 April 2025

