

COURSE OVERVIEW DE0893 Practical Seismic Interpretation with Petrel

Course Title

Practical Seismic Interpretation with Petrel

Course Date/Venue

Session 1: April 13-17, 2025/Meeting Plus 8, City Centre Rotana Doha Hotel, Doha, Qatar Session 2: September 07-11, 2025/Meeting Plus 8, City Centre Rotana Doha Hotel, Doha, Qatar

CEUS

(30 PDHs)

Course Reference DE0893

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-ofthe-art simulators.

The main objective of this course is to provide E&P professionals with the opportunity to develop handson experience of various seismic interpretation techniques using the Petrel software package. The course will cover the essential geological and geophysical information necessary to visualize and interpret seismic data. Participants of the course will gain a solid understanding of the applications and role of the seismic interpreter in studies that involve poststack seismic attributes, AVO, seismic sequence stratigraphy, seismic geomorphology, 4D time-lapse seismic, and multidisciplinary integration.

A significant percentage of the course is dedicated to reinforcement and advancement of interpretation techniques using practical exercises – both on the Petrel software and by hand. This will guide the participants in the understanding that the integration of all available data into the seismic model will add value in the needed coherent and successful seismic predictions that result from an interpretation.

DE0893 - Page 1 of 10

DE0893-04-25|Rev.05|04 November 2024

Further, this course will also discuss the seismic functionality in Petrel workflow tools; the random intersections, generating surface and variogram from attribute maps and importing check shots; the correct sonic log and establishing time – depth relation; generating wavelets and making synthetic seismogram; comparing seismogram with real well seismic; the seismic data interpretation using Petrel software; the applications, importing well seismic data, SEG-Y file parameters, well to seismic tie, seismic – data visualization and seismic data viewing; the advanced quantitative seismic interpretation and Petrel quantitative interpretation; and the synthetics generation, well to seismic matching and rock physics.

During this interactive course, participants will learn the Petrel advance geophysics, Petrel quantitative interpretation, accurate and comprehensive quantitative interpretation and direct hydrocarbon indicators (DHI) – fractured; the seismic attributes, spectral attributes, relative acoustic impedance supervised classification, spectral decomposition, reservoir thickness estimate and spectral attributes; the shear wave techniques, quantitative interpretation for inversion and simulation and contributions of seismic in Petrel reservoir modelling; the 3D structural modeling, 3D property modeling, facies modeling, and fracture modeling volume calculations; the data analysis and plotting; the Petrel user interface, visualization and statistics; importing well seismic data, data viewports, seismic data viewing and well correlation; the well templates well tops – flattening and interactive facies interpretation; and the seismic interpretation workflow, mapping, plotting and creating maps.

Course objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on 3D seismic horizon and fault interpretation
- Discuss seismic functionality in Petrel workflow tools and create random intersections
- Generate surface and variogram from attribute maps and import check shots
- Apply correct sonic log and establish time depth relation
- Generate wavelets and make synthetic seismogram as well as compare seismogram with real well seismic
- Carryout seismic data interpretation using Petrel software
- Illustrate property applications, importing well seismic data, SEG-Y file parameters, well to seismic tie, seismic data visualization and seismic data viewing
- Employ advanced quantitative seismic interpretation using Petrel quantitative interpretation
- Discuss synthetics generation, well to seismic matching and rock physics
- Determine Petrel advance geophysics, Petrel quantitative interpretation, accurate and comprehensive quantitative interpretation and direct hydrocarbon indicators (DHI)
- Explain seismic attributes, spectral attributes, relative acoustic impedance supervised classification, spectral decomposition, reservoir thickness estimate and spectral attributes
- Apply shear wave techniques, quantitative interpretation for inversion and simulation and contributions of seismic in Petrel reservoir modelling
- Illustrate 3D structural modeling, 3D property modeling, facies modeling, fracture modeling and volume calculations, data analysis and plotting
- Recognize Petrel user interface, visualization and statistics

ilm

ET

- Import well seismic data and apply data viewports, seismic data viewing and well correlation
- Create and apply well templates covering well tops flattening and interactive facies interpretation
- Illustrate the seismic interpretation workflow, mapping, plotting and creating maps

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC

Who Should Attend

This course provides an overview of all significant aspects and considerations of 3D seismic horizon and fault interpretation for geoscientists, organizations and individuals that are migrating to Petrel from Interpretation Window-focused software as well as staff that may be sheltering in a serial 2D approach to 3D interpretation. It can also be adapted to accommodate geoscientists without an interpretation background such graduates, geomodellers and processing geophysicists.

Course Fee

US\$ 8,500 per Delegate. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures 20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

DE0893 - Page 3 of 10

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training A CEL (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in gualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

** BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

DE0893 - Page 4 of 10

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Ron Guney (Ramazan Guney), MSc, BSc, is a Senior Geophysicist with over 35 years of Offshore & Onshore experience within the Oil, Gas, Refinery and Petrochemical industries. His expertise widely covers Geophysics, Geophysical Technology, Borehole Geophysics, Seismology, Wave Propagation & Velocities, Seismic Acquisition Techniques, Seismic Data Processing, Vertical Seismic Profiling (VSP), Seismic Data Interpretation,

Geomodelling, Prospect Generation-Delineation & Reservoir Modelling, Static Modelling, Prospect Generation through Seismic Structural & Stratigraphic Interpretation, Prospect-Play Risk Assessment & Ranking, Resource & Reserve Estimations, Post Stack Seismic Attribute Analysis, Post Stack Seismic Inversion, Traveltime Inversion, Crossborehole Seismic Tomography, Seismic Sequence Stratigraphy, Program Coding (VSP & Cross-borehole Travel Time Inversion ART and SIRT), Post Drill Well Assessment, Field Development, Seismotectonics & Seismostratigraphy, Geodynamics & Modelling. Cartographic Information Systems (CIS), Geographic Information Systems (GIS), Geodesy & Topography, Geodesy, Map Projections & Coordinate Systems, Geological Maps (GM), Topographic & Geologic Maps, Cartography Assisted by Computer (CAC), Global Positional System (GPS), Petroleum Geology, Advanced Petrophysics, Petroleum Exploration, Petroleum Economics, Drilling, Core-to-Log Data Integration (SCAL), Basin Modelling & Total Petroleum System (TPS), Well Logging, Formation Evaluation, Well Testing & Data Interpretation, Pore Pressure Prediction and Oil & Gas Reserves Estimations. He is also an expert in 2D & 3D Seismic Interpretation Oil Risk Analysis, Landmark, Zmap+ Mapping Package, Petrel Schlumberger, Promax Processing System and 3D Seismic Data Acquisition. Currently, he is the Senior Geophysicist Consultant of Eastern Offshore Black Sea E&P Projects.

During his long career, Mr. Guney has gained his practical and field experience through his various significant positions and dedication as the **Senior Geophysicist Consultant**, **Senior Geophysicist**, **Senior Project Geophysicist**, **Teaching Assistant**, **Lecturer**, **Instructor/Trainer** from numerous international companies such as the Eastprime Service Co., Emirates National Oil Company (ENOC) - Dragon Oil, OMV Petrol and Turkish Petroleum Corp, just to name a few.

Mr. Guney has a Master's degree in Geology from the University of New Orleans, USA and a Bachelor's degree in Geophysics from the Istanbul Technical University. Further, he is a Certified Instructor/Trainer, a Certified Trainer/Assessor by the Institute of Leadership & Management (ILM) and has published books and scientific papers such as Iterative Wavefront Technique (**IWR**), Mathematical Reconstruction Geophysics, Model Exploration Geophysics, Optimisation in Importance of Seismic Interpretation Systems and delivered various trainings, seminars, workshops, courses and conferences worldwide.

DE0893 - Page 5 of 10

IA

<u>Course Program</u> The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Dav 1

Day I	
0730 - 0745	Registration & Coffee
0745-0800	Welcome & Introduction
0800 - 0815	PRE-TEST
0815-0830	Seismic Functionality in Petrel Workflow Tools
0830 - 0845	Seismic Functionality Updates
0845 - 0900	Introduction to Seismic Updates
0900 - 0930	New Seismic Functionalities
0930 - 0945	Seismic Data Visualization in Base Map Window
0945-1000	Create Random Intersections
1000 - 1015	Break
1015 – 1030	Optional Survey Manager
1030 - 1045	Optional; Miss -Tie Analysis
1045 - 1100	Attribute Maps
1100 – 1200	Generate Surface & Variogram from Attribute Maps
1200 - 1215	Synthetic Seismogram - Slides
1215 – 1230	Make Well Section
1230 - 1245	Break
1245 – 1300	Import Check Shots
1300 - 1315	Correct Sonic Log & Establish Time - Depth Relation
1315 – 1330	Make Acoustic Impedance Log & Reflection Coefficient Series
1330 - 1345	Generate Wavelets & Make Synthetic Seismogram
1345 – 1400	Compare Seismogram with Real Well Seismic
1400 - 1420	Manual Adjustment & Event Picking
1420 - 1430	Recap
1430	Lunch & End of Day One

Dav 2

Day Z	
0730 - 0800	Display the Synthetic Trace in a 3D & Interpretation Window
0800- 0830	Non-Global Deal Functionalities
0830 - 0900	Introduction to Ant-Tracking
0900 - 0930	Generate the Structural Smoothing Attribute Cube
0930 0945	Seismic Data Interpretation Using Petrel Software: Workflow
	Introduction • Project Setup • Types of Data • Petrel User Interface • Data
	Import, Export, Viewing & Q.C • Well Correlation (Geology & Synthetic
	Seismogram) • Seismic Data Interpretation • Mapping
	Applications
0945 - 1000	Seismic Data Loading • Well Data Loading (Well Head, Well Trajectory,
	Well Logs, Check – Shot & Well Tops) •Assigning Check – Shots to Well
	Data • Creating Synthetic Seismogram • Seismic Attributes • Depth
	Conversion of Horizon C & Applying Well Adjustment • Maps of Depth
	Surface
1000 - 1015	Break

iosh

DE0893 - Page 6 of 10

1015 – 1030	Import Well Seismic Data
	Well Velocity Survey • Check Shots & VSP (Using Petrel Software)
1030 - 1045	Seismic Data Import
	SEG-Y File Parameters
1045 – 1100	X & Y Coordinates of the Survey • Inline & Xline Position in the Header •
	CDP & SP Positions
	Well to Seismic Tie
1100 – 1200	Synthetic to Seismic Matching - Well Ties Using Petrel Software • Time
	Depth Table • Well Synthetic Seismograms • VSP & Well Seismic
1200 – 1215	Seismic – Data Visualization
	Random / Arbitrary Seismic Lines
1215 - 1230	Seismic Data Viewing
1230 - 1245	Break
1245 – 1300	Introduction to Seismic Interpretation
	Seismic Interpretation Workflow
	Seismic Data Displaying • Generate Attribute Cubes • Automatic Fault
1300 - 1315	Extraction Workflow • Manual Fault Interpretation • Horizon
1000 - 1010	Interpretation • Time to Depth Conversion (Video) • Mapping & Plotting
	• Time to Depth Maps • Seismic Attributes (Coherence, Spectral
	Decomposition, Sweetness & DHI
1315 – 1330	Import Data
	Well Survey • Formation Top • Check Shots & Seismic Survey (2D & 3D)
1330 - 1345	Display Data (2D & 3D) & QC
1345 - 1400	Reference Datum
1400 - 1420	Create Well Correlation (Data Conditioning)
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3

Stratigraphy
Create Synthetic Seismograms
Seismic Well Tie (Comparison Between Seismic & Well Data)
Attributes Attribute Generation
Chaos • Structural Smoothing • Dip • Variance • Ant Tracking
Seismic Data Interpretation (Horizons & Faults)
Automatic Fault Extraction
Break
Surface Attributes (Seismic Attribute Map)
Multi-Z Interpretation
Mapping (Surfaces)
Editing Surface & Contour
Domain Conversion (Depth Modeling)
Cross Section
Break

DE0893 - Page 7 of 10

AWS

iosh

1245 - 1300	Quantitative Interpretation
1300 - 1315	Create a Seismic Property
1315 – 1330	Advanced Quantitative Seismic Interpretation: Petrel Quantitative Interpretation Quantitative Seismic Interpretation Fundamentals • Recapitulation of Seismic Fundamentals • Statistics for Quantitative Interpretation • Log Data Preparation
1330 - 1345	<i>Generation of Synthetics</i> Log Editing • Treatment of Different Wavelets/Band Pass Filtering
1345 - 1400	<i>Well to Seismic Matching</i> Derivation of Seismic Wavelet • The White Approach to Matching • The Deconvolution Model
1400 - 1420	Rock Physics Elastic Moduli & Their Inter-Relations • Hashin-Shtrickman-Berryman Model •Eberhart-Phillips for Shaley Sandstones •The Xu-White Method for Estimation of Vs • The Gassmann Fluid Replacement Algorithm
1420 - 1430	Recap
1430	Lunch & End of Day Three

Dav 4

Day 4	
0730 - 0800	Petrel Advance Geophysics
0800- 0830	Petrel Quantitative Interpretation
0830 - 0900	Accurate & Comprehensive Quantitative Interpretation
	Rock Physics • AVO / AVA • Post Stack Deterministic & Stochastic
	Inversion • Seismic Pore Pressure Prediction •DHI • 4-D Seismic (Time
	Lapse Analysis)
	Direct Hydrocarbon Indications
0900 - 0930	Direct Hydrocarbon Indicators (DHI) – Fractured Reservoirs & Fault
0900 - 0930	Analysis • Automated Fault Mapping & Fault Attributes • Amplitude
	Versus Offset (AVO) – Avo Slope & Intercept
	Seismic Inversion
0930-0945	Pre-Stack Versus Post-Stack • Sparse Spike Method • Model Based
	Inversion • Stochastic Inversion
0945 - 1000	Attributes
0945 - 1000	Seismic Attributes
1000 - 1015	Break
1015 - 1030	Spectral Attributes
1030 - 1045	Relative Acoustic Impedance Supervised Classification
1045 - 1100	Spectral Decomposition
1100 - 1200	Reservoir Thickness Estimate & Spectral Attributes
1200 - 1215	Carbonate Case Study
	Seismic Attributes
1215 - 1230	<i>The Barnes Classification</i> • <i>Coherency & Related Attributes</i> • <i>Geometrical</i>
	Attributes • Pitfalls
1230 - 1245	Break

DE0893 - Page 8 of 10

AWS

iosh

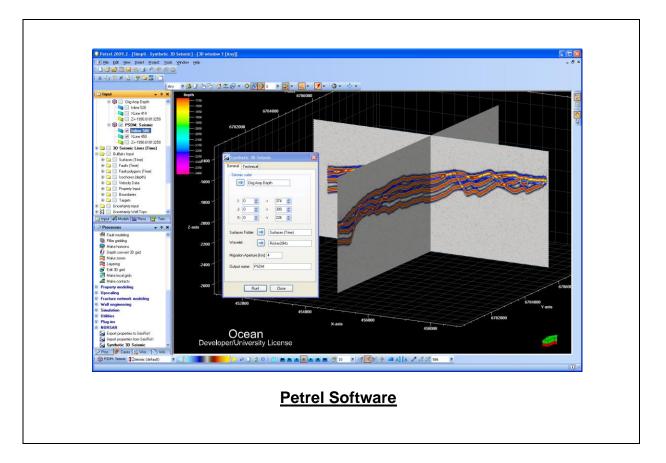
Approved training provider

1245 - 1300	Uncertainties
	Mathematical Derivation • Dependencies • Reserve Calculations
1300 - 1315	Shear Wave Techniques
	The Natih Multicomponent Survey • AVO Application • AVO In Practice
	• AVO Concept & Related Factors • AVO Pitfalls & Assumptions •
	Hydrocarbon Detection Using AVO • Processing for AVO Analysis •
	AVO Modelling & Inversion • Time Lapse (4D) Seismic
1215 1220	Quantitative Interpretation for Inversion & Simulation
1315 – 1330	Fluid Substitution Pitfall • Fluid Substitution
	Contributions of Seismic in Petrel Reservoir Modelling
	Introduction • Project Setup • Types of Data • Petrel User Interface •
1330 - 1345	Data Import, Export, Viewing & Q.C • Well Correlation (Geology &
	Synthetic Seismogram) • Seismic Data Interpretation • Mapping •
	Application (Data)
1345 - 1400	3D Structural Modeling (Horizons & Fault Model).
1400 - 1420	3D Property Modeling Based on Well Logs & Trend Data
	(Stochastic, Deterministic)
1420 - 1430	Recap
1430	Lunch & End of Day Four

Dav 5

Day 5	
0730 - 0800	Facies Modeling Using Stochastic & Deterministic Methods
0800- 0830	Fracture Modeling Using a Discrete Fracture Network Approach to
	Create Fracture Properties
0830 - 0900	Volume Calculations, Data Analysis & Plotting
	Petrel User Interface
0900 - 0930	User Interface • Petrel Explorer Panes • Process Diagram & Function Bar
	• 3D Buttons • Petrel Menus
0930-0945	Visualization
0550-0545	3D Display Window • Create General Intersection
0945 - 1000	Importing Data
0040 1000	Import Overview • File Types • Organization
1000 - 1015	Break
	Well Data Import
1015 – 1030	<i>Process Overview</i> • <i>Well Heads Import</i> • <i>Importing Well Path / Deviation:</i>
1010 1000	• Well Logs Importing • Importing Well Tops (Formation Top) • Import
	Well Tops Overview
	Import Well Seismic Data
1030 - 1045	Well Velocity Survey – Check Shots& VSP • Seismogram Ell to Seismic
	Tie • Seismic – Synthetic Seismogram
1045 - 1100	Well Correlation
	Data Viewports • Seismic Data Viewing • Well Correlation
1100 – 1200	Creating & Applying Well Templates
	Well Tops – Flattening • Interactive Facies Interpretation
1200 - 1215	Introduction to Seismic Interpretation
1215 – 1230	Seismic Interpretation Workflow
	Input Seismic Data • Generate Volume Attributes • Pick the Faults
	"Using Automatic Extraction or by Manual Interpretation" • Tie the Well
	to Seismic • Map Your Horizons •Depth Convert for Horizons & All
1220 1217	Seismic Volume
1230 - 1245	Break

DE0893 - Page 9 of 10


DE0893-04-25|Rev.05|04 November 2024

1245 - 1300	Mapping & Plotting
	Gridding • Creating Maps
1300 - 1315	Surface Polygons & Fault Polygons
	Fault Polygons
1315 - 1330	Creating Maps
	Two Way Time (TWT) Surface Map
1330 - 1345	Plotting
	Depth Map • Isochrone Map
1345 - 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "Petrel" software.

Course Coordinator

Reem Dergham, Tel: +974 4423 1327, Email: reem@haward.org

DE0893 - Page 10 of 10

DE0893-04-25|Rev.05|04 November 2024