

COURSE OVERVIEW ME1148 Features and Technology of Pumps & Pipe Systems

Course Title

Features and Technology of Pumps & Pipe Systems

Course Date/Venue

Session 1: May 25-29, 2025/Meeting Plus 9, City Centre Rotana, Doha, Qatar Session 2: September 21-25, 2025/Meeting Plus 9, City Centre Rotana, Doha, Qatar

> O CEUS (30 PDHs)

Course Reference

ME1148

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This course is designed to provide participants with a detailed and up-to-date overview of Features and Technology of Pumps & Pipe Systems. It covers the purpose, applications and types of pump systems and basic fluid mechanics for piping and pumping; the pump and operations, pipe materials classifications and classifications, pipe flow fundamentals and pump and pipe system components; the centrifugal pump technology and positive displacement pump technology; the pump sizing and selection and pump installation and commissioning; the common pump issues and troubleshooting covering cavitation and air entrainment, seal and bearing failure, excessive vibration and noise and overheating and dry and the pump efficiency and energy running; considerations including pipe sizing and flow calculations.

During this interactive course, participants will learn the pressure losses and pump head, surge and water hammer control, thermal effects and pipe expansion, pipe supports and layout and CAD and simulation tools for pipe systems; the pump control systems, instrumentation for pipe and pump monitoring, valve automation and control; the maintenance strategies for pump and pipe systems; the system integration and P&ID interpretation and safety and environmental considerations; the smart pumping systems and IIoT and corrosion; and the erosion in piping systems and energy optimization in pump and pipe networks.

ME1148- Page 1 of 9

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on features and technology of pumps and pipe
- Discuss the purpose, applications and types of pump systems and basic fluid mechanics for piping and pumping
- Recognize pump classifications and operations, pipe materials and classifications, pipe flow fundamentals and pump and pipe system components
- Identify centrifugal pump technology and positive displacement pump technology as well as carryout pump sizing and selection and pump installation and commissioning
- Recognize common pump issues and troubleshooting covering cavitation and air entrainment, seal and bearing failure, excessive vibration and noise and overheating and dry running
- Apply pump efficiency and energy considerations including pipe sizing and flow calculations
- Recognize pressure losses and pump head, surge and water hammer control, thermal effects and pipe expansion, pipe supports and layout and CAD and simulation tools for pipe systems
- Discuss pump control systems and apply instrumentation for pipe and pump monitoring, valve automation and control and maintenance strategies for pump and pipe systems
- Carryout system integration and P&ID interpretation and discuss safety and environmental considerations, smart pumping systems and IIoT, corrosion and erosion in piping systems and energy optimization in pump and pipe networks

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of features and technology of pumps and pipe for mechanical engineers, process engineers, piping engineers, maintenance engineers and technicians, operations and plant personnel, utility and facility engineers, project and design engineers, technical supervisors and team leaders, engineering consultants and contractors and other technical staff.

ME1148- Page 2 of 9

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• ACCREDITED The (IACI

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

ME1148- Page 3 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Karl Thanasis, PEng, MSc, MBA, BSc, is Senior Mechanical & Maintenance Engineer with over 45 years of extensive industrial experience. His wide expertise includes Piping & Pipeline, Maintenance, Repair, Shutdown, Turnaround & Outages, Maintenance & Reliability Management, Mechanical Maintenance Planning, Scheduling & Work Control, Advanced Techniques in Maintenance Management, Predictive & Preventive Maintenance, Maintenance & Operation Cost Reduction Techniques, Reliability

Centered Maintenance (RCM), Machinery Failure Analysis, Rotating Equipment Reliability Optimization & Continuous Improvement, Material Cataloguing, Mechanical & Rotating Equipment Troubleshooting & Maintenance, Root Cause Analysis & Reliability Improvement, Condition Monitoring, Root Cause Failure Analysis (RCFA), Steam Generation, Steam Turbines, Power Generator Plants, Gas Turbines, Combined Cycle Plants, Boilers, Process Fired Heaters, Air Preheaters, Induced Draft Fans, All Heaters Piping Work, Refractory Casting, Heater Fabrication, Thermal & Fired Heater Design, Heat Exchangers, Heat Transfer, Coolers, Power Plant Performance, Efficiency & Optimization, Storage Tank Design & Fabrication, Thermal Power Plant Management, Boiler & Steam System Management, Pump Operation & Maintenance, Chiller & Chiller Plant Design & Installation, Pressure Vessel, Safety Relief Valve Sizing & Selection, Valve Disassembling & Repair, Pressure Relief Devices (PSV), Hydraulic & Pneumatic Maintenance, Advanced Valve Technology, Pressure Vessel Design & Fabrication, Pumps, Turbo-Generator, Turbine Shaft Alignment, Lubrication, Mechanical Seals, Packing, Blowers, Bearing Installation, Couplings, Clutches and Gears. Further, he is also versed in Wastewater Treatment Technology, Networking System, Water Network Design, Industrial Water Treatment in Refineries & Petrochemical Plants, **Piping** System, Water Movement, Water Filtering, Mud Pumping, Sludge Treatment and Drying, Aerobic Process of Water Treatment that includes Aeration, Sedimentation and Chlorination Tanks. His strong background also includes Design and Sizing of all Waste Water Treatment Plant Associated Equipment such as Sludge Pumps, Filters, Metering Pumps, Aerators and Sludge Decanters.

Mr. Thanasis has acquired his thorough and practical experience as the Project Manager, Plant Manager, Area Manager - Equipment Construction, Construction Superintendent, Project Engineer and Design Engineer. His duties covered Plant Preliminary Design, Plant Operation, Write-up of Capital Proposal, Investment Approval, Bid Evaluation, Technical Contract Write-up, Construction and Subcontractor Follow up, Lab Analysis, Sludge Drying and Management of Sludge Odor and Removal. He has worked in various companies worldwide in the USA, Germany, England and Greece.

Mr. Thanasis is a **Registered Professional Engineer** in the **USA** and **Greece** and has a **Master's** and **Bachelor's** degree in **Mechanical Engineering** with **Honours** from the **Purdue University** and **SIU** in **USA** respectively as well as an **MBA** from the **University** of **Phoenix** in **USA**. Further, he is a **Certified Internal Verifier/Trainer/Assessor** by the **Institute of Leadership & Management** (**ILM**) a **Certified Instructor/Trainer** and has delivered numerous trainings, courses, seminars, workshops and conferences worldwide.

ME1148- Page 4 of 9

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 6,000 per Delegate. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Introduction to Pumping Systems
0830 - 0930	Purpose and Applications • Types of Pump Systems • Overview of Pipe
	Networks • Integration with Process Systems
0930 - 0945	Break
0945 - 1030	Basic Fluid Mechanics for Piping & Pumping
	Properties of Fluids (Density, Viscosity) • Pressure and Head Relationships •
	Bernoulli's Principle • Flow Regimes (Laminar versus Turbulent)
1030 - 1130	Pump Classifications & Operations
	Centrifugal versus Positive Displacement • Dynamic versus Kinetic Energy
	Pumps • Pump Curves and Performance • Applications and Selection Criteria
	Pipe Materials & Classifications
1130 – 1215	Metallic versus Non-Metallic Pipes • Pipe Schedule and Wall Thickness •
	Corrosion Resistance • Application-Based Material Selection
1215 – 1230	Break
	Pipe Flow Fundamentals
1230 – 1330	Flow Rate and Velocity Calculations • Pressure Drop and Head Loss • Friction
	Factors and Reynolds Number • Equivalent Length Concept
1330 - 1420	Pump & Pipe System Components
	Valves (Gate, Globe, Ball, Check) • Flanges and Fittings • Strainers and Filters
	• Expansion Joints and Supports
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One

Day 1

ME1148- Page 5 of 9

ay 2	Centrifugal Pump Technology
0730 - 0830	Impeller Types and Configurations • Pump Casing Types (Volute, Diffuser)
	Single versus Multistage • Priming and NPSH
0830 - 0930	Positive Displacement Pump Technology
	Gear, Vane and Lobe Pumps • Piston and Diaphragm Pumps • Flow Rat
	Control • Pressure Capabilities
0930 - 0945	Break
0945 – 1100	Pump Sizing & Selection
	Determining System Head • Selecting Flow Rate • Affinity Laws • Matchin
	Pump to Application
1100 – 1215	Pump Installation & Commissioning
	Baseplate Alignment • Suction and Discharge Piping • Vibration Isolation
	Operational Checks
1215 – 1230	Break
	Common Pump Issues & Troubleshooting
1230 - 1330	Cavitation and Air Entrainment • Seal and Bearing Failure • Excessiv
	Vibration and Noise • Overheating and Dry Running
1330 – 1420	Pump Efficiency & Energy Considerations
	Pump Efficiency Curves • Energy Usage Metrics • Variable Speed Drive
	(VSDs) • Lifecycle Cost Analysis
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to b
	Discussed Tomorrow
1430	Lunch & End of Day Two

Dav 2

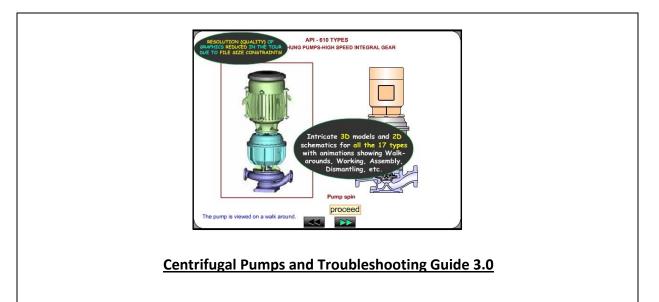
Day 3	
	Pipe Sizing & Flow Calculations
0730 - 0830	<i>Continuity Equation • Darcy-Weisbach Equation • Hazen-Williams Formula •</i>
	Pipe Sizing Charts
	Pressure Losses & Pump Head
0830 - 0930	Frictional Losses • Minor Losses (Fittings, Valves) • Elevation Changes •
	Total Dynamic Head (TDH)
0930 - 0945	Break
	Surge & Water Hammer Control
0945 – 1100	Causes and Impact • Analysis and Modeling • Air Chambers and Surge Tanks
	<i>Valve Closure Control</i>
	Thermal Effects & Pipe Expansion
1100 – 1215	Expansion Loops and Joints • Pipe Stress Analysis • Anchor and Guide
	Systems • Thermal Insulation
1215 – 1230	Break
	Pipe Supports & Layout
1230 – 1330	Types of Supports (Rigid, Spring) • Pipe Routing and Slope • Expansion and
	Contraction Allowances • Support Spacing Guidelines
	CAD and Simulation Tools for Pipe Systems
1330 – 1420	Introduction to Pipe Design Software • Simulation of Flow and Pressure • 3D
	Modeling of Piping Systems • Case Study: Pipe Network Simulation
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

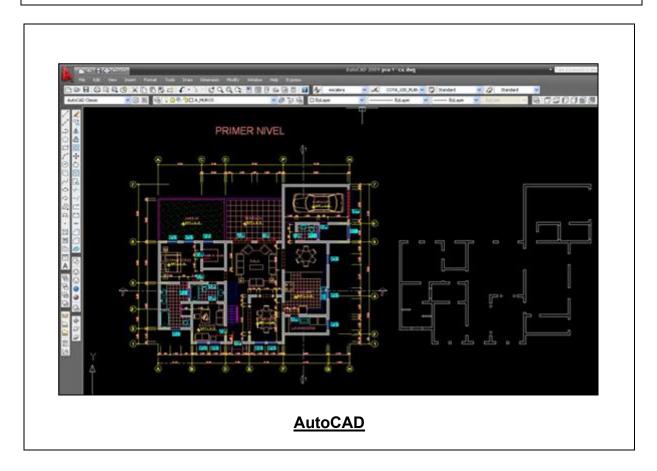
ME1148- Page 6 of 9

Day 4	
0730 - 0830	Pump Control Systems
	Pressure and Flow Sensors • on/off Control versus VFD Control • PID Control
	Logic • Smart Pump Technology
	Instrumentation for Pipe & Pump Monitoring
0830 - 0930	Flow Meters (Ultrasonic, Magnetic) • Pressure Gauges and Transmitters •
	Temperature Sensors • Vibration Monitoring Systems
0930 - 0945	Break
0945 – 1100	Valve Automation & Control
	Actuated Valve Types • Solenoids and Motor-Operated Valves • Remote
	Control and SCADA Integration • Positioners and Limit Switches
	Maintenance Strategies for Pump & Pipe Systems
1100 – 1215	Preventive Maintenance Schedules • Predictive Maintenance (Vibration,
1100 - 1215	Thermal) • Root Cause Analysis of Failures • Spare Parts and Inventory
	Management
1215 – 1230	Break
	System Integration & P&ID Interpretation
1220 1220	Understanding Piping and Instrumentation Diagrams • Symbols and Legends
1230 – 1330	• Control Loops and Instrumentation Mapping • Integration with Process
	Control Systems
1330 - 1420	Safety & Environmental Considerations
	Leak Detection Systems • Overpressure Protection • Safe Handling of
	Hazardous Fluids • Environmental Regulations
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Dav 5

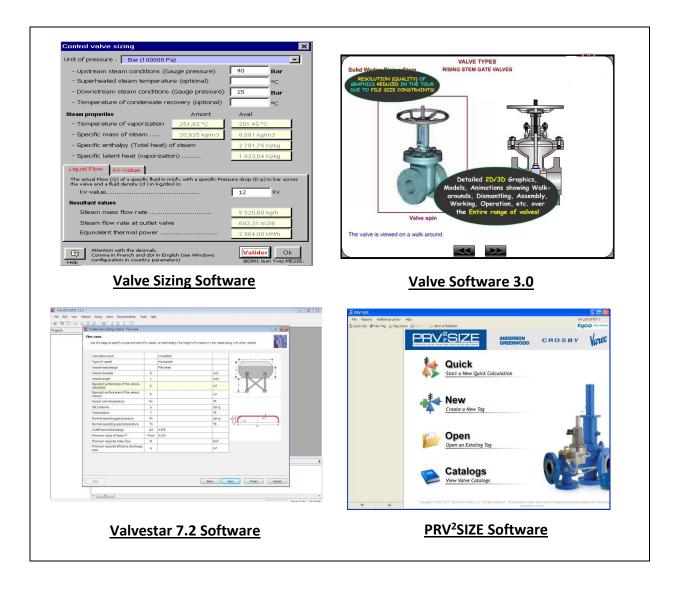
-	Smart Pumping Systems & IIoT
0730 - 0830	Internet of Things (IoT) in Pumps • Wireless Monitoring and Alerts •
	Predictive Analytics and AI • Data Logging and Trend Analysis
	Corrosion & Erosion in Piping Systems
0830 - 0930	Mechanisms of Corrosion and Erosion • Corrosion Protection Methods •
	Cathodic Protection • Coatings and Linings
0930 - 0945	Break
	Energy Optimization in Pump & Pipe Networks
0945 - 1100	Energy Audit Methods • Efficiency Upgrades • Optimization Case Studies •
	Payback Analysis
	Case Studies: Real-World Systems
1100 – 1215	Water Supply System • Industrial Process Circulation • Firefighting Pump
	Network • District Cooling Systems
1215 – 1230	Break
	Hands-on Workshop & Group Exercises
1230 – 1345	Pump Performance Evaluation • Pipe Network Flow Simulation •
	Troubleshooting Scenarios • P&ID Drawing Interpretation
	Course Conclusion
1345 – 1400	Using this Course Overview, the Instructor(s) will Brief Participants about a
	Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course


ME1148- Page 7 of 9 ME1148-06-25/Rev.00\21 April 2025



Simulators (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art Simulator "Centrifugal Pumps and Troubleshooting Guide 3.0", "AutoCAD", "Valve Sizing Software", "Valve Software 3.0", "Valvestar 7.2 Software" and "PRV2SIZE Software".



ME1148- Page 8 of 9

Course Coordinator Reem Dergham, Tel: +974 4423 1327, Email: reem@haward.org

ME1148- Page 9 of 9

