

COURSE OVERVIEW FE0111 Metallurgical Laboratory Failure Examination for Refinery

Course Title

Metallurgical Laboratory Failure Examination for Refinery

Course Date/Venue

July 06-10, 2025/Sahra Meeting Room, Al Bandar by Rotana, Creek Dubai, Dubai, UAE

Course Reference

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This course is designed to provide participants with a detailed and up-to-date overview of Metallurgical Laboratory Failure Examination for Refinery. It covers the refinery material failures and the importance of failure analysis in safety and cost management; the principles of failure analysis; the step-by-step failure investigation process and documentation and reporting practices; the metallurgical properties of refinery materials, microstructural influences on failure and the effects of temperature, pressure, and corrosive environments; the classification of failures, and failure analysis toolkit; the corrosion mechanisms in refineries.

Further, the course will also discuss the hightemperature corrosion, hydrogen damage, wear and erosion mechanisms and stress corrosion cracking (SCC); the basics of fracture surface analysis and the overload, fatigue, and brittle fractures; the microstructural analysis, chemical analysis techniques, residual stress analysis, and nondestructive examination (NDE) for failure analysis; the root cause analysis methodologies covering fault tree analysis (FTA), ishikawa (fishbone) diagrams and five whys technique; and the mechanical failures in refinery equipment, welding and fabrication defects and failures in specific refinery units.

FE0111 - Page 1 of 9

During this interactive course, participants will learn the failure prevention strategies comprising of material selection and design considerations, process control and monitoring, inspection and maintenance best practices; the repair and remediation methods and developing failure analysis reports; the continuous improvement in asset integrity through learning from past failures, integrating failure analysis into asset management, and collaboration with design and operation teams and refinery best practices for integrity management; and the emerging trends in failure analysis consisting of AI and machine learning in failure prediction, advances in NDE technologies, industry 4.0 and digital twins and future challenges and opportunities.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain comprehensive knowledge on metallurgical laboratory examination for refinery
- Identify refinery material failures and the importance of failure analysis in safety and cost management
- Discuss the principles of failure analysis and apply the step-by-step failure investigation process as well as documentation and reporting practices
- Recognize metallurgical properties of refinery materials, microstructural influences on failure and the effects of temperature, pressure, and corrosive environments
- Classify failures, apply failure analysis toolkit and discuss corrosion mechanisms in refineries
- Determine high-temperature corrosion, hydrogen damage, wear and erosion mechanisms and stress corrosion cracking (SCC)
- Explain the basics of fracture surface analysis and identify overload, fatigue, and brittle fractures
- Employ microstructural analysis, chemical analysis techniques, residual stress analysis, and nondestructive examination (NDE) for failure analysis
- Carryout root cause analysis methodologies covering fault tree analysis (FTA), ishikawa (fishbone) diagrams and five whys technique
- Assess mechanical failures in refinery equipment, welding and fabrication defects and failures in specific refinery units
- Apply failure prevention strategies comprising of material selection and design considerations, process control and monitoring, inspection and maintenance best practices
- Employ repair and remediation methods and develop failure analysis reports
- Apply continuous improvement in asset integrity through learning from past failures, integrating failure analysis into asset management, collaboration with design and operation teams and refinery best practices for integrity management
- Discuss the emerging trends in failure analysis consisting of AI and machine learning in failure prediction, advances in NDE technologies, industry 4.0 and digital twins and future challenges and opportunities

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

FE0111 - Page 2 of 9

Who Should Attend

The course provides an overview of all significant aspects and considerations of metallurgical laboratory failure examination for refinery for materials engineers, corrosion engineers, process engineers, refinery management/executives, refinery operations and maintenance managers, metallurgists, health, safety, and environmental (HSE) professionals and other technical staff.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

FE0111 - Page 3 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Tony Dimitry, PhD, MSc, BSc, is a Senior Pipeline & Piping Engineer with over 30 years of industrial experience. His expertise includes Metallurgy Identification & Inspection, Corrosion and Metallurgy, Metallurgical Failure Analysis & Prevention, ASME B31 Piping & Pipeline, Piping, Pipelines & Fabrication, Piping & Flanges, Pressure Vessels, Pipeline & Compression, Oil & Gas Pipeline Infrastructure, Pipeline Inspection, Testing & Integrity Assessment, Pipeline Defect Assessment, Pipeline Integrity Management, Pipeline Pigging-Technical & Operational Aspects,

Pigging Operations, Pigging Technology, Pipeline & Piping Design, Welding Technology, Welding Machine Safety, Welding Machine Calibrations, Welding Machine Inspection & Maintenance, Welding Machine Operational Tests, Welding Technology & Qualifications, Welding & Fabrication, Welding Processes, Welding Inspection, Welding Procedure Specification, Welding Quality & Control, Welding Engineering, Welding & Machining, Welding Safety, Welding Defects Analysis, Metallurgical & Materials Engineering, Piping & Pipeline Systems, Inspection Maintenance, Diesel Engine, Control Diagrams, Electrical Wiring Diagrams, GFCI Testing & Resetting Procedures, Battery Maintenance, Mechanical Pipe Fittings, Flange Joint Assembly, Adhesive Bond Lamination, Butt Jointing, Joint & Spool Production, Isometric Drawings, Flange Assembly Method, Fabrication & Jointing, Jointing & Spool Fabrication, Pipe Cuttings, Flange Bolt Tightening Sequence, Hydro Testing, Failure Analysis Methodologies, Machinery Root Cause Failure Analysis (RCFA), Preventive Maintenance & Condition Monitoring, Reliability Centred Maintenance (RCM), Risk Based Inspection (RBI), Root Cause Analysis (RCA), Planning & Managing Plant Turnaround, Scheduling Maintenance, Data Archive Maintenance, Master Milestone Schedule (MMS), Piping & Mechanical Vibration Analysis, Preventive & Predictive Maintenance (PPM) Maintenance, Condition Based Monitoring (CBM), Risk Based Assessment (RBA), Planning & Preventive Maintenance, Maintenance Management (Preventive, Predictive, Breakdown), Reliability Management, Rotating Equipment, Air Compressors Operation, Air Compressors Maintenance, Air Compressors Operational Tests, Air Compressors Inspection Lists, Generator Testing, Maintenance & Troubleshooting, Generator Operational Tests, Voltage Regulator, Generator Inspection Lists, Non Destructive Test, Metallurgical Failure Analysis & Prevention, ASME B31.8, Gas Transportation Piping Code, Mechanical Integrity, Fittings, Pressure Vessels, Dry Gas Seal, Process Equipment, Diesel Engine & Crane Maintenance, Reliability Management, Electric Arc Furnace (EAF), Vibration Analysis, Heat Exchanger, Boiler, Gas Turbine, Siemens Steam Turbine Maintenance, Failure Analysis, FMEA, Corrosion, Metallurgy, Preventive and Predictive Maintenance. Currently, he is in charge of the metallurgical failure analysis and the usage of fracture mechanics for determining crack propagation in impellers of turbines.

During his career life, Dr. Dimitry was a **Senior Engineer** in **Chloride Silent** (UK) wherein he was responsible for the mechanical, thermal and electrical modelling of battery problems for electric vehicles and satellites as well as an **Operations Engineer** of the **National Nuclear Corporation** (UK) wherein he was responsible for the optimization of the plant. Prior to this, he was a **Professor** at the **Technical University of Crete** and an Assistant **Professor** of the **University of Manchester** (UK). Dr. Dmitry also held significant positions such as the **Operations Engineer**, **Technical Trainer**, **HSE Contracts Engineer**, **Boilers Section Engineer**, **Piping Engineer**, **Trainee Mechanical Engineer**, **Welding Engineer**, **Turbines Section Head** and **Lecturer/Instructor** and from various multinational companies like **National Nuclear Corporation**.

Dr. Dimitry has PhD, Master and Bachelor degrees in Mechanical Engineering from the Victory University of Manchester and the University of Newcastle, UK respectively. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and an associate member of the American Society of Mechanical Engineers (ASME) and Institution of Mechanical Engineers (IMechE). He has further delivered various trainings, seminars, courses, workshops and conferences internationally.

FE0111 - Page 4 of 9

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- Simulators (Hardware & Software) & Videos 20%

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 5,500 per Delegate + VAT. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday 06 th of July 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Overview of Refinery Material Failures
0830 - 0930	Common Failure Modes in Refineries • Case Studies of Significant Refinery
	<i>Failures</i> • <i>Importance of Failure Analysis in Safety & Cost Management</i> • <i>Introduction to Relevant Standards (API, ASTM)</i>
0930 - 0945	Break
	Principles of Failure Analysis
0945 - 1100	Definition & Objectives • The Step-By-Step Failure Investigation Process • Role of
	Multidisciplinary Teams • Documentation & Reporting Practices
	Material Properties & Behavior
1100 1200	Metallurgical Properties of Refinery Materials • Microstructural Influences on
1100 - 1200	Failure • Effects of Temperature, Pressure, & Corrosive Environments • Case
	Study Analysis
	Classification of Failures
1200 – 1230	Ductile versus Brittle Failures • Fatigue & Creep Mechanisms • Stress Corrosion
	Cracking (SCC) • Hydrogen-Induced Damage
1230 - 1245	Break
1245 - 1330	Failure Analysis Toolkit
	Overview of Metallurgical Lab Equipment • Optical Microscopy & Scanning
	Electron Microscopy (SEM) • Energy-Dispersive X-Ray Spectroscopy (EDS) •
	Mechanical Testing Methods (e.g., Tensile, Hardness, Impact)

FE0111 - Page 5 of 9

	Hands-On Session: Failure Analysis Workflow
1330 - 1420	Demonstration of Specimen Preparation • Introduction to Microscopy for Failure
	Evaluation • Discussion on Initial Findings & Hypothesis Formulation
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2:	Monday, 07 th of July 2025
0730 – 0830	Corrosion Mechanisms in Refineries
	Uniform & Localized Corrosion • Pitting, Crevice Corrosion, & Galvanic
	Corrosion • Case Examples of Refinery Corrosion Failures • Mitigation Techniques
	& Material Selection
	High-Temperature Corrosion
0830 - 0930	Oxidation & Sulfidation • Metal Dusting • Carburization & Decarburization •
	Case Studies in Hydroprocessing Units
0930 - 0945	Break
	Hydrogen Damage
0945 - 1100	Hydrogen Embrittlement • High-Temperature Hydrogen Attack (HTHA) •
	Blistering & Cracking • Detection & Prevention Strategies
	Wear & Erosion Mechanisms
1100 – 1230	Abrasion, Erosion, & Cavitation • Impacts of Fluid Velocity & Particulates •
1100 - 1250	Material Behavior Under High Wear Conditions • Case Studies of Refinery
	Equipment Failures
1230 - 1245	Break
	Stress Corrosion Cracking (SCC)
1245 - 1330	Mechanisms & Contributing Factors • SCC in Carbon Steel & Stainless Steel •
	Methods of Detection & Control • Case Histories
	Lab Exercise: Corrosion Analysis Techniques
1230 – 1420	Surface Examination of Corroded Specimens • Corrosion Pit Measurement Using
1250 - 1420	Microscopy • Use of X-Ray Diffraction for Phase Analysis • Interpretation of
	Results
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	<i>Topics that were Discussed Today and Advise Them of the Topics to be Discussed</i>
1420	
1430	Lunch & End of Day Two

Day 3:	Tuesday, 08 th of July 2025
0730 - 0830	Fractography Basics of Fracture Surface Analysis • Identifying Overload, Fatigue, & Brittle Fractures • SEM Applications in Fractography • Case Examples of Fracture Evaluations
0830 - 0930	<i>Microstructural Analysis</i> <i>Metallography Techniques & Etching</i> • <i>Interpreting Microstructures of Carbon & Alloy Steels</i> • <i>Heat-Affected Zones & Weld Failures</i> • <i>Case Studies</i>

FE0111 - Page 6 of 9

UKAS

B(●)HS

0930 - 0945	Break
0945 - 1100	Chemical Analysis Techniques
	Optical Emission Spectroscopy (OES) • X-Ray Fluorescence (XRF) • Elemental
	Analysis Using EDS • Practical Session on Alloy Composition Identifiation
1100 1220	Residual Stress Analysis
	Importance of Residual Stress in Failure Mechanisms • X-Ray Diffraction & Hole
1100 – 1230	Drilling Methods • Interpretation of Stress Maps • Case Applications in Refinery
	Equipment
1230 – 1245	Break
	Nondestructive Examination (NDE) for Failure Analysis
1245 - 1330	Magnetic Particle Inspection (MPI) • Ultrasonic Testing (UT) • Radiography (RT)
1243 - 1550	& Eddy Current Testing (ECT) • Integration of NDE Results in Failure
	Investigations
1230 - 1420	Lab Session: Advanced Techniques
	Demonstration of SEM/EDS • Practical Use of OES & XRF • Analysis of Real-
	World Failure Samples
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Three

Day 4:	Wednesday, 09 th of July 2025
0730 - 0830	Root Cause Analysis Methodologies
	Fault Tree Analysis (FTA) • Ishikawa (Fishbone) Diagrams • Five Whys
	Technique • Practical Exercises
	Mechanical Failures in Refinery Equipment
0830 - 0930	Failures in Pressure Vessels & Piping • Rotating Equipment & Pump Failures •
	Heat Exchanger Failures • Case Studies & Lessons Learned
0930 - 0945	Break
	Welding & Fabrication Defects
0945 – 1100	Common Welding Flaws (e.g., Porosity, Cracks) • Inspection Techniques for Weld
	<i>Quality</i> • <i>Case Examples of Weld Failures</i> • <i>Repair & Prevention Strategies</i>
	Failures in Specific Refinery Units
1100 – 1230	Hydrocracker & Catalytic Reformer Units • Crude Distillation Column Failures •
	Delayed Coker Unit Case Studies • Mitigation & Design Improvements
1230 – 1245	Break
	Case Study Analysis
1245 - 1330	Group Exercise on Real-World Failure Investigations • Identification of Root
	Causes • Recommendations & Preventive Measures • Presentation & Discussion
1230 - 1420	Hands-On Session: Mock RCA Exercise
	Analyze a Provided Failure Scenario • Apply RCA Tools to Identify Issues •
	Develop a Failure Analysis Report
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four

FE0111 - Page 7 of 9

Day 5:	Thursday, 10 th of July 2025
0730 - 0830	Failure Prevention Strategies
	Material Selection & Design Considerations • Process Control & Monitoring •
	Inspection & Maintenance Best Practices • Real-World Examples
	Repair & Remediation Methods
0830 - 0930	Welding & Heat Treatment for Repairs • Coating & Cladding Solutions •
	Replacement versus Repair Decision-Making • Standards & Guidelines
0930 - 0945	Break
	Developing Failure Analysis Reports
0945 – 1100	Structure & Key Components of a Report • Visual Aids: Photos, Diagrams, &
0945 - 1100	Charts • Common Pitfalls in Reporting • Peer Review & Communication
	Strategies
	Continuous Improvement in Asset Integrity
1100 – 1230	Learning from Past Failures • Integrating Failure Analysis into Asset
1100 - 1250	Management • Collaboration with Design & Operation Teams • Refinery Best
	Practices for Integrity Management
1230 - 1245	Break
1245 - 1345	Emerging Trends in Failure Analysis
	AI & Machine Learning in Failure Prediction • Advances in NDE Technologies •
	Industry 4.0 & Digital Twins • Future Challenges & Opportunities
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

FE0111 - Page 8 of 9

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the simulators "Corrosion Data Management Software (CDMS)" and "Electronic Corrosion Engineer (ECE®) 5".

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

FE0111 - Page 9 of 9

