

COURSE OVERVIEW PE0621 Petrochemical Manufacturing Process & Troubleshooting

&

Course Title

Petrochemical Manufacturing Process Troubleshooting

(30 PDHs)

Course Reference PE0621

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Date/Venue		
Session(s)	Date	Venue
1	May 18-22, 2025	Meeting Plus 9, City Centre Rotana, Doha Qatar
2	August 18-22, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
3	November 16-20, 2025	Crowne Meeting Room, Crowne Plaza Al Khobar, KSA

Course Description

This hands-on, highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops

Natural gas and crude distillates such as naptha from petroleum refining are used as feedstocks to manufacture a wide variety of petrochemicals that are in turn used in manufacture of consumer aoods. the The basic petrochemicals manufactured by cracking, reforming and other processes include olefins (such as ethylene, propylene, butylenes and butadiene) and aromatics (such as benzene, toluene and xylenes). The capacity of naptha crackers is generally of the order of 250,000-750,000 metric tons per year (tpy) of ethylene production. Some petrochemical plants also have alcohol and oxo-compound manufacturing units on site. The base petrochemicals or products derived from them, along with other raw materials, are converted to a wide range of products.

This course is designed to cover the manufacturing process of petrochemicals and the monitoring and troubleshooting of such process. It covers petrochemicals and petrochemical complex, aromatics, olefins, synthesis methanol formaldehyde, gas (syngas), synthesis, methanol manufacturing and sources of olefinic and aromatic hydrocarbons.

PE0621 - Page 1 of 8

Further, the course will also cover the treatment of olefenic C_4 and C_5 cuts and the treatment of aromatic gasolines including acetylene, monomers for the synthesis of elastomers, ethylene and propylene oxides, acetic derivatives, alcohols, phenol, acetone and methyl ethyl ketone, vinyl monomers, monomers for polyamide synthesis, monomers for polyester synthesis, monomers for polyurethane synthesis and olefin production from methanol.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply systematic techniques on petrochemical manufacturing process and troubleshooting
- Discuss petrochemicals and petrochemical complex that includes downstream units and petrochemicals' hub
- Determine aromatics, olefins, synthesis gas (syngas), methanol synthesis and formaldehyde
- Carryout methanol manufacturing as well as recognize the sources of olefinic and aromatic hydrocarbons
- Perform proper treatment of olefenic C₄ and C₅ cuts as well as the treatment of aromatic gasolines
- Describe acetylene, monomers for the synthesis of elastomers, ethylene and propylene oxides
- Identify the acetic derivatives, alcohols, phenol, acetone, methyl ethyl ketone and vinyl monomers
- Differentiate monomers for polyamide synthesis, monomers for polyester synthesis, monomers for polyurethane synthesis and olefin production from methanol

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of petrochemical manufacturing process and troubleshooting for process, chemical, operation, maintenance and design and production engineers and technical staff. Further, the course is suitable for environmental, laboratory, R&D and R&T staff including chemists, scientists, analysts, technologist, technicians and environmental professionals.

PE0621 - Page 2 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

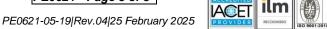
Certificates are accredited by the following international accreditation organizations:-

• BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

USA International Association for Continuing Education and Training (IACET)


Haward Technology is an Authorized Training Provider by the International Association for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, Virginia 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 1-2013 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 1-2013 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Association for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

PE0621 - Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Robert Harvey, MSc (Cum Laude), BSc is a Senior Chemical Engineer with over 30 years of in-depth industrial experience within the Oil & Gas, Refinery, Petrochemical, Mining and Power industries. His expertise widely covers in the areas of Fertilizer Manufacturing Process Technology, Fertilizer Storage Management (Ammonia & Urea), Petrochemical & Fertilizer Plants, Nitrogen Fertilizer Production, Petroleum Industry Process Engineering, Process Equipment Design & Troubleshooting, Process Equipment & Piping Systems, Fertilizer Manufacturing Process Technology, Production Management,

Process Plant Optimization & Continuous Improvement, Revamping & Debottlenecking, Pressure Vessel Operation, Heat Mass Balance, Distillation-Column Operation, & Troubleshooting, Production Process Optimization, Debottlenecking, Unit Performance Optimization, Process Analyzers, Real Time Online Optimization, Operations Planning Optimization, Engineering Problem Solving, Bag Filters Operation & Maintenance, Process Equipment Design, Chemical Reaction Engineering Application, Phosphatic Industry, Diammonium Phosphate, Monoammonium Phosphate, NPK, Troubleshooting Improvement, Production Management, Distillation-Column Operation & Troubleshooting, Vinyl Chloride Monomer (VCM) Manufacturing & Process Troubleshooting, Monomer Handling Safety, Cement Manufacturing Process Technology & Standards, Complex Operational Troubleshooting, Incident Root Cause Analysis & Corrective Action, Process Equipment & Piping System, Fertilizer Manufacturing, Process Plant Optimization & Continuous Improvement, Process Plant Performance & Efficiency, Continuous Improvement & Benchmarking, Energy Efficiency for Process Plants, **Pressure Vessel** Operation, **Reactors & Storage Tanks**, Dehydrating Columns, Heat & Material Balance, Troubleshooting Process Operations, Modern Aluminium Production Processes, Cement Kiln Process, Process Engineer Calculations, Steel Making Process, P&ID Reading & Interpretation, Detailed Engineering Design, Process Diagrams Review, Process Hazard Analysis (PHA), HAZOP Leadership, Project HSE Review (PHSER), Safe Handling of Propylene Oxide & Ethylene Oxide, Safety in Process & Industrial Plants, Environmental Impact Assessment (EIA) and Effective Risk Assessment & HAZOP Studies. Further, he is also well versed in Feasibility Studies Analysis & Evaluation, Project Gate System Procedures, Process Mapping, Change Management Skills, Change Management Strategy, Strategical Process Control in Process Industry, Developing Commercial Contracts, Project Management Skills, Project Scheduling & Cost Control, FIDIC & Other Model Contracts, EPC & EPCM Contracts. Knowledge Management. Job Evaluation. Creative Problems Solving & Innovation Skills, Problem Solving & Decision Making, Strategic Planning & Creative Thinking and Mind Mapping.

During his career life, Mr. Harvey has gained his practical and field experience through his various significant positions and dedication as the **Commercial Director**, **Manufacturing Director**, **Chief Operating Officer**, **Head Projects Division**, **Project Leader**, **Lead Technical Advisor/Consultant** and **Project Consultant** to various international companies such as the Trade and Industrial Policy Strategies (TIPS), PGBI Johannesburg, IDC Green Industries SBU/Arengo 316 Pty Ltd, Ferrum Crescent Limited, CEF Limited, Rio Tinto Alcan, Industrial Development Corporation of SA (IDC) and AECI Limited.

Mr. Harvey has Master's (Cum Laude) and Bachelor's degrees in Chemical Engineering. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and has delivered various trainings, seminars, conferences, workshops and courses globally.

PE0621 - Page 4 of 8

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

Doha	US\$ 6,000 per Delegate. This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Abu Dhabi	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Al Khobar	US\$ 5,500 per Delegate. This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day I	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0845	Introduction of Petrochemicals
	Feedstocks • Intermediates • Finished Products
0845 - 0930	Petrochemical Complex
	Downstream Units • Petrochemicals' Hub
0930 - 0945	Break
	Aromatics
0945 - 1100	Xylene and Polyester Chain • Toluene, Benzene, Polyurethane and Phenolic Chain •
	Benzene and Styrenic Chain, Derivatives

PE0621 - Page 5 of 8 PE0621-05-19|Rev.04|25 February 2025

	Olefins
1100 – 1215	<i>Ethylene, Derivatives</i> • <i>Propylene, Derivatives</i> • <i>Butadiene, Butylenes, and Pygas,</i>
	Derivatives
1215 – 1230	Break
1230 - 1420	Synthesis Gas (Syngas)
	Methanol Based Products • Ammonia Based Products
1420 – 1430	Recap
1430	Lunch & End of Day One

Day 2

	Methanol Synthesis	
0730 - 0815	Preparation of Synthesis Gas • Thermodynamic Aspects of Methanol Synthesis • Kinetic	
	Aspects of Methanol Synthesis • Processes • Economic Data • Uses and Producers	
0815 - 0930	Formaldehyde	
	Direct Oxidation of Hydrocarbons • Methanol Oxidation • Economic Data • Uses and	
	Producers	
0930 - 0945	Break	
0945 - 1100	Methanol Manufacturing	
	Lurgi MegaMethanol [®] Technology • Process Description	
	Sources of Olefinic and Aromatic Hydrocarbons	
1100 – 1215	Steam Cracking • Catalylic Reforming • Other Sources of Olefinic Hydrocarbons •	
	Other Sources of Aromatic Hydrocarbons	
1215 – 1230	Break	
1230 - 1420	The Treatment of Olefenic C ₄ and C ₅ Cuts	
	Upgrading of of C_4 Cuts • Upgrading of C_5 Cuts	
1420 – 1430	Recap	
1430	Lunch & End of Day Two	

Day 3

0730 - 0915	The Treatment of Aromatic Gasolines	
	Main Processing Schemes • Physical Methods for Separating Aromatics • Treatment of	
	the Aromatic C ₈ Cut • Aromatics Conversion Processes • Aromatic Loop, Simplified	
	Balance • Uses & Producers	
0915 - 0930	Break	
	Acetylene	
0930 - 1030	Theoretical Considerations • Acetylene Manufacture from Coal Calcium Carbide Process	
	• Acetylene Manufacture from Hydrocarbons, Thermal Processes with Direct Heat	
	Transfer • Acetylene Manufacture from Hydrocarbons, Thermal Processes with Indirect	
	Heat Transfer • Acetylene Manufacture from Hydrocarbons, Autothermal Processes •	
	Acetylene Manufacture by Extraction from Steam-Cracked C ₂ Cuts • Economic Data •	
	Uses & Procedures	
1030- 1145	Monomers for the Synthesis of Elastomers	
1030-1145	Butadiene • Isobutene • Isoprene • Styrene • p-Methyl Styrene • Chloropene	
1145 – 1200	Break	
1200 - 1420	Ethylene and Propylene Oxides	
	Ethylene Oxide • Propylene Oxide • Ethylene Glycol • Propylene Glycol	
1420 – 1430	Recap	
1430	Lunch & End of Day Three	

PE0621 - Page 6 of 8

Day 4

0730 - 0930	Acetic Derivatives	
	Acetaldehyde • Acetic Acid • Acetic Anhydride	
0930 - 0945	Break	
0945 - 1115	Alcohols	
	Ethanol • Isopropanol • Butanols • Higher Alcohols	
1115 – 1145	Phenol, Acetone and Methyl Ethyl Ketone	
	Phenol • Acetone • Methyl Ethyl Ketone	
1145 – 1200	Break	
1200 - 1420	Vinyl Monomers	
	Vinyl Acetate • Vinyl Chloride • Acrylic Acid, Acrylates and Methacrylates •	
	Acrylonitrile	
1420 - 1430	Recap	
1430	Lunch & End of Day Four	

Day 5

0730 - 0945	Monomers for Polyamide Synthesis	
	Manufacture of Nylon-6,6, Adipic Acid and Hexamethylene Diamine • Manufacture	
	of Nylon-6, Caprolactam • Manufacture of Nylon-11, 11-Aminoundecanoic Acid •	
	Manufacture of Nylon-12, Laurolactam	
0945 – 1000	Break	
	Monomers for Polyester Synthesis	
1000 - 1100	Dimethyl Terephthalate and Terephthalic Acid • Maleic Anhydride • Phthalic	
	Anhydride • 1,4-Butanediol • 1,4-Dimethylol Cyclohexane	
1100 – 1215	Monomers for Polyurethane Synthesis	
	Main Monomers Used Industrially to Synthesize Polyurethanes • Synthesis of	
1100 - 1213	<i>Tolylene Diisocyanate, TDI</i> • <i>Synthesis of Diphenymethane</i> 4,4'-Diisocyanate MDI	
	and Polymeric MDI • Polyether-Polyols	
1215 – 1230	Break	
1230 - 1345	Olefin Production from Methanol	
	Introduction • MTO Technology • Production Process • Economic Basis	
1345 – 1400	Course Conclusion	
1400 - 1415	POST-TEST	
1415 – 1430	Presentation of Course Certificates	
1430	Lunch & End of Course	

PE0621 - Page 7 of 8

Practical Sessions

This hands-on, highly-interactive course includes real-life case studies and exercises:-

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

PE0621 - Page 8 of 8

