

COURSE OVERVIEW PE1053 Cement Quality & Chemistry

Course Title

Cement Quality & Chemistry

Course Date/Venue

August 24-28, 2025/Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

O CEUS

(30 PDHs)

Course Reference PE1050

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Cement Quality and Chemistry. It covers the definitions and role of cement in cement chemistry; the oxide composition and cement chemistry notation; the raw material chemistry, clinker chemistry and phase composition, chemical modules and chemical reactions during clinker formation; the hydration of portland cement, hydration products and their role and influence of clinker composition on hydration; and setting time and early reactions, heat hydration, supplementary pozzolanic and cementitious materials (SCMs).

During this interactive course, participants will learn the chemical analysis techniques, clinker and cement phase analysis and physical properties affecting quality; compressive strength testing, SO₃ optimization and control and alkalis and chloride in the international cement standards, cement: statistical quality control (SQC) process control based on chemistry and the quality assurance in cement laboratory; environmental considerations and chemistry and troubleshoot quality deviations; durability of cement-based materials, the alkaliaggregate reaction (AAR), white and special the blended cements: and cements and performance optimization.

PE1053 - Page 1 of 8

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on cement quality and chemistry
- Discuss the definitions and role of cement in cement chemistry covering the basic construction, types of cement, manufacturing process and the importance of chemical composition in quality control
- Identify the oxide composition and cement chemistry notation including the major oxides, minor/trace oxides and cement chemistry notation
- Explain raw material chemistry, clinker chemistry and phase composition, chemical modules and chemical reactions during clinker formation
- Discuss the hydration of portland cement as well as hydration products and their role and influence of clinker composition on hydration
- Set time and early reactions and apply heat hydration, pozzolanic and supplementary cementitious materials (SCMs)
- Define chemical analysis techniques, clinker and cement phase analysis and physical properties affecting quality
- Carryout compressive strength testing, SO₃ optimization and control and alkalis and chloride in cement
- Discuss the international cement standards, apply statistical quality control (SQC) process control based on chemistry and the quality assurance in cement laboratory
- Employ environmental considerations and chemistry and troubleshoot quality deviations
- Assess durability of cement-based materials including the alkali-aggregate reaction (AAR), white and special cements and blended cements and performance optimization

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of cement quality and chemistry for process engineers, quality control engineers, laboratory technicians, chemists, cement plant operators, production supervisors, R&D personnel, technical services engineers, maintenance engineers (related to kiln and mill operations), environmental engineers, HSE officers (involved with material handling), raw material analysts, clinker production personnel, procurement specialists (for raw materials and additives), new graduate engineers (in training) and other technical staff.

PE1053 - Page 2 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

 The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

PE1053 - Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Manuel Dalas, PEng, MSc, BSc, is a Senior Process Engineer with almost 30 years of industrial experience within the Oil & Gas, Refinery, Petrochemical and Refinery industries. His expertise widely includes in the areas of Process Engineering & Systems Failure Analysis, Equipment & Mechanical Integrity, Process Failure Prevention, Engineering Modifications & Systems Failures, Cement Manufacturing, Cement Grinding Flow Sheet, Cement Quality & Chemistry, Cement Kiln Process & Operation, Root Cause

Failure Analysis (RCFA) Techniques, Methodology Selection based on Specific Scenarios, Process Plant Optimization, Revamping & Debottlenecking, Process Plant Troubleshooting & Engineering Problem Solving, Process Plant Operations, Mass & Material Balance, Oil & Gas Processing, Process Plant Performance & Efficiency, Crude Distillation Process Saturated Gas Process Technology, Crude Dehydration & Desalting, Crude Stabilization Operations, Heat Exchangers & Fired Heaters Operation & Troubleshooting, Pressure Vessels Maintenance & Operation, Piping Support, Ironworks, Rotating & Static Equipment (Pumps, Valves, Boilers, Pressure Vessels, Tanks, Bearings, Compressors, Pipelines, Motors, Turbines, Gears, Seals), Hydrogen Sulphide Stripping, Crude Oil De Salting Process, Gas Conditioning, NGL Recovery & NGL Fractionation, Flare Systems, Pre-Fabrication of Steel Structure, Alloy Piping Pre-Fabrication, Vertical Columns/Pressure Vessels, Distillation Column, Steel Structures, Construction Management, Building Structures and Electrical-Mechanical Equipment. Currently, he is the Technical Consultant of the Association of Local Authorities of Greater Thessaloniki wherein he oversees mechanical engineering services while focusing on system reviews and improvements. His role involves a strategic approach to enhancing operational efficiencies and implementing robust solutions in complex engineering environments.

During his career life, Mr. Dalas has gained his practical and field experience through his various significant positions and dedication as the **Technical Manager**, **Construction Manager**, **Senior Process Engineer**, **Process Safety Engineer**, **Process Design Engineer**, **Project Engineer**, **Production Engineer**, **Construction Engineer**, **Consultant Engineer**, **Technical Consultant**, **Safety Engineer**, **Mechanical Engineer**, **External Collaborator**, **Deputy Officer** and **Senior Instructor/Trainer** for various companies including the Alpha Astika, Anamorfosis Technical Firm, EKME, ASTE, Elof Consulting and Hypergroup.

Mr. Dalas is a **Registered Professional Engineer** and has a **Master's** degree in **Energy** System from the International Hellenic University and a Bachelor's degree in Mechanical Engineering from the Mechanical Engineering Technical University, Greece along with a Diploma in Management & Production Engineering from the Technical Universitv Crete. Further. Certified Internal of he is а Verifier/Assessor/Trainer by the Institute of Leadership and Management (ILM), a Certified Project Manager Professional (PMI-PMP), a Certified Instructor/Trainer, a Certified Energy Auditor for Buildings, Heating & Climate Systems, a Member of the Hellenic Valuation Institute and the Association of Greek Valuers and a Licensed Expert Valuer Consultant of the Ministry of Development and Competitiveness. He has further delivered numerous trainings, courses, seminars, conferences and workshops internationally.

PE1053 - Page 4 of 8

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 24 th of August 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction to Cement Chemistry
	Basic Definitions & Role of Cement in Construction • Types of Portland Cement & Blended Cement • Overview of Cement Manufacturing Process • Importance of Chemical Composition in Quality Control
0930 - 0945	Break
0945 – 1030	Oxide Composition & Cement Chemistry Notation Major Oxides: CaO, SiO ₂ , Al ₂ O ₃ , Fe ₂ O ₃ • Minor/Trace Oxides: MgO, SO ₃ , K_2O , Na ₂ O, TiO ₂ • Cement Chemistry Notation (C, S, A, F, H, Etc.) • Molecular & Weight-Based Representation
1030 - 1130	<i>Raw Material Chemistry & its Impact</i> <i>Raw Material Sources & Chemical Variability</i> • <i>Effect of Impurities on Clinker</i>
	Formation • Role of Correctives & Minor Additives • Influence on Burnability & Clinker Phase Development
	Clinker Chemistry & Phase Composition
1130 - 1215	Main Clinker Minerals: C_3S , C_2S , C_3A , C_4AF • Roles of Each Mineral in Cement Performance • Impact of Cooling Rate & Kiln Parameters on Phase Formation • Microscopical Identification of Clinker Phases
1215 – 1230	Break
1230 - 1330	<i>Chemical Modules in Clinker Quality</i> <i>Lime Saturation Factor (LSF)</i> • <i>Silica Ratio (SR) & Alumina Ratio (AR)</i> • <i>Relationship to Clinker Burnability & Performance</i> • <i>Optimization of Modules</i> <i>for Different Cement Types</i>
	Chemical Reactions During Clinker Formation
1330 - 1420	Decomposition of Raw Mix Components • Solid-State Reactions in the Kiln • Liquid Phase Generation & Role in Sintering • Free Lime Formation & Clinker Quality
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

PE1053 - Page 5 of 8

Day 2:	Monday, 25 th of August 2025
0730 - 0830	Hydration of Portland Cement
	Overview of Hydration Process • Hydration of $C_3S & C_2S • C_3A & Gypsum$
	<i>Interaction</i> • <i>Hydration of C</i> ₄ <i>AF</i> & <i>Secondary Reactions</i>
0830 - 0930	Hydration Products & their Role
	Calcium Silicate Hydrate (C–S–H) • Calcium Hydroxide (CH) • Ettringite &
	Monosulfate Formation • Microstructure Development & Porosity
0930 - 0945	Break
0945 - 1100	Influence of Clinker Composition on Hydration
	Reactivity of Silicates versus Aluminates • Effect of Cooling Rate on Clinker
	Reactivity • Alite/Belite Ratio & Strength Gain Pattern • Role of Free Lime &
	Unreacted Phases
1100 - 1215	Setting Time & Early Reactions
	Factors Affecting Initial & Final Set • Flash Set & False Set Phenomena •
	<i>Effect of Gypsum & Retarders</i> • <i>Testing Methods (Vicat Apparatus, Gillmore Needles)</i>
1215 - 1230	Break
1213 - 1230	Heat of Hydration
	Exothermic Nature of Hydration Reactions • Measurement Using Calorimetry
1230 - 1330	• Influence of Cement Chemistry & Fineness • Relevance to Mass Pours &
	Thermal Cracking
	Pozzolanic & Supplementary Cementitious Materials (SCMs)
	Silica Fume, Fly Ash, Slag & Natural Pozzolans • Reaction with CH &
1330 – 1420	Formation of Secondary C-S-H • Impact on Strength, Durability &
	Permeability • Chemical Considerations in Blended Cement
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two
Day 3:	Tuesday, 26 th of August 2025
	Chemical Analysis Techniques
0730 - 0830	X-Ray Fluorescence (XRF) for Major Oxides • Wet Chemistry & Classical
0750 - 0050	Methods • LOI & Sulfate Determination • Sample Preparation & Fusion
	Techniques
	Clinker & Cement Phase Analysis
0830 - 0930	X-Ray Diffraction (XRD) • Rietveld Refinement for Phase Quantification •
	Microscopic Analysis of Clinker • SEM/EDS for Morphology & Elemental
0000 0045	Mapping
0930 - 0945	Break
0045 1100	Physical Properties Affecting Quality
0945 – 1100	Fineness: Blaine, Laser Particle Size Analyzer • Setting Time (Initial, Final) •
	Soundness (Le Chatelier Method, Autoclave) • Consistency & Water Demand
	Compressive Strength Testing Standard Mortar Mix & Curing Protocols • 1, 3, 7, 28-Day Strength
1100 – 1215	Development • Impact of C_3S/C_2S Ratio & Fineness • Variability Control &
	Troubleshooting
1215 – 1230	Break
1213 - 1230	SO ₃ Optimization & Control
1230 - 1330	Role in Early Strength & Setting • Interaction with C_3A & Alkalis • Optimal
	Solution C_3A of Arkans \bullet Optimal SO ₃ to C_3A Ratio \bullet Gypsum Addition Control & Hemihydrate Effects
	1 003 to 0321 Natio Oypount Mattion Control O Henningarate Effects

PE1053 - Page 6 of 8

1330 - 1420	Alkalis & Chloride in Cement
	<i>Impact on Concrete Durability</i> • <i>Alkali-Silica Reaction (ASR) Risks</i> • <i>Chloride</i>
	Limits for Reinforced Concrete • Total versus Water-Soluble Alkali Content
	Recap
1420 – 1430	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three
Day 4:	Wednesday, 27 th of August 2025
	Overview of International Cement Standards
0730 – 0830	ASTM C150, C595, EN 197, BS 12 • ISO 679 & ISO 9001 Integration •
0750 - 0850	Strength Classes & Setting Time Limits • SO ₃ , MgO, Chloride & Insoluble
	Residue Limits
	Statistical Quality Control (SQC)
0020 0020	Mean, Standard Deviation & Control Limits • Control Charts for Oxide
0830 – 0930	Composition & Strength • Capability Indices (Cp, Cpk) • Trend Analysis &
	Corrective Actions
0930 - 0945	Break
	Process Control Based on Chemistry
0945 – 1100	Real-Time Raw Mix Adjustment • Cross-Belt Analyzers & PGNAA Systems •
	Feedback Loops from Lab to Kiln • Blending & Proportioning Strategies
	Quality Assurance in Cement Laboratory
1100 1015	Calibration & Standardization of Instruments • Inter-Laboratory Comparisons
1100 – 1215	• Round Robin Tests & Proficiency Schemes • SOPs, Documentation &
	Traceability
1215 – 1230	Break
	Environmental Considerations & Chemistry
	Influence of Cement Chemistry on CO ₂ Emissions • Low-Carbon Binders &
1230 – 1330	SCMs • Alkali Bypass & Chlorine/Sulfur Balance • Emission Control &
	Material Substitution
	Troubleshooting Quality Deviations
	Low Early Strength: Root Causes & Remedies • Setting Problems & False Set •
1330 – 1420	High Free Lime & Under-Burned Clinker • Role of Lab Data in Operational
	Decisions
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

0945 - 1040	White & Special Cements
	Chemical Composition for White Clinker • Low Iron & Manganese Control • Oil-
	Well, Rapid Hardening & Sulfate-Resisting Cements • Unique Chemical
	Formulations & Challenges
1040 - 1135	Blended Cements & Performance Optimization
	Pozzolanic Cements (CEM II, CEM IV) • Slag Cements & Latent Hydraulic
	Reactions • Influence on Strength & Workability • Adjusting Clinker Chemistry
	for Blending
1135 -1230	Research Trends in Cement Chemistry
	Belite-Rich & Belite-Sulfoaluminate Cements • Carbon-Neutral & Geopolymer
	Cements • Nano-Additives & their Chemical Effects • Durability-Enhancing
	Admixtures
1230 - 1245	Break
1245 - 1345	Workshop & Final Review Case Study on Clinker & Cement Analysis •
	Cement Mix Design for Target Properties • Final Quiz & Group Discussion •
	Course Evaluation & Certification
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

PE1053 - Page 8 of 8

