

COURSE OVERVIEW IE0181 Quality Management Assurance Techniques in (OT) Environments

Course Title

Quality Management Assurance Techniques in (OT) Environments

Course Reference

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Date/Venue

Session(s)	Date	Venue
1	April 21-25, 2025	Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
2	August 10-14, 2025	Crowne Meeting Room, Crowne Plaza Al Khobar, Al Khobar, KSA
3	October 19-23, 2025	Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE
4	December 21-25, 2025	Meeting Plus 9, City Centre Rotana, Doha, Qatar

Course Description

This practical and highly-interactive course includes real-life case studies where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview on the Quality Management Assurance Techniques in Operational Technology (OT) Environments. It covers the components of OT systems and critical importance of OT in industrial processes; the quality management and the regulatory standards for OT system; establishing quality objectives in OT by aligning objectives with business and operational strategies and incorporating stakeholder requirements; the risk assessment techniques and mitigation strategies; and incorporating risk management into quality plans.

Further, the course will also discuss the roles and responsibilities of quality managers and OT engineers; creating detailed process maps for quality assurance, identifying critical control points and maintaining accurate documentation; the proper testing and validation, calibration and accuracy assurance and defect management and compliance resolution: conducting audits for and improvement: reporting audit findinas and recommendations; and verifying communication between subsystems and testing interoperability with legacy systems.

IE0181 - Page 1 of 9

During this interactive course, participants will learn the statistical process control (SPC), Six Sigma, lean principles and automated quality monitoring systems; the change management, incident management, quality control and continuous improvement strategies; the cybersecurity threats in OT environments and quality assurance in secure systems; the resilience and recovery planning, compliance with cybersecurity standards and incident response and quality assurance; and the emerging trends in OT quality assurance, building a quality culture in OT and performance metrics for OT quality.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on the quality management assurance techniques in operational technology (OT) environments
- Discuss the components of OT systems and critical importance of OT in industrial processes
- Carryout quality management and review regulatory standards for OT system
- Establish quality objectives in OT by aligning objectives with business and operational strategies and incorporate stakeholder requirements
- Identify risks, apply risk assessment techniques and mitigation strategies and incorporate risk management into quality plans
- Identify the roles and responsibilities of quality managers and OT engineers
- Create detailed process maps for quality assurance, identify critical control points and maintain accurate documentation
- Carryout testing and validation, calibration and accuracy assurance including defect management and resolution
- Conduct audits for compliance and improvement, report audit findings and implement recommendations
- Apply integration testing, verify communication between subsystems and test interoperability with legacy systems
- Recognize statistical process control (SPC), six sigma, lean principles and automated quality monitoring systems
- Employ change management, incident management, quality control and continuous improvement strategies
- Identify cybersecurity threats in OT environments and apply quality assurance in secure systems
- Carryout resilience and recovery planning, compliance with cybersecurity standards, and incident response and quality assurance
- Discuss the emerging trends in OT quality assurance, build a quality culture in OT and apply performance metrics for OT quality

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

IE0181 - Page 2 of 9

Who Should Attend

This course provides an overview of all significant aspects and considerations of quality management assurance techniques in operational technology (OT) environments for OT engineers and technicians, process control engineers, cybersecurity professionals, operational technology managers, supply chain managers (in OT), quality assurance (QA) and quality control (QC) personnel, IT professionals working with OT systems, risk management and safety officers and other technical staff.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

IE0181 - Page 3 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Barry Pretorius is a Senior Instrumentation Engineer with almost 30 years of extensive experience within the Oil, Gas, Petrochemical, Refinery & Power industries. His expertise widely covers in the areas of Cyber Security Practitioner, Cyber Security of Industrial Control System, IT Cyber Security Best Practices, Cybersecurity Fundamentals, Ethical Hacking & Penetration Testing, Cybersecurity Risk Management, Cybersecurity Threat

Intelligence, OT Whitelisting for Better Industrial Control System Defense, NESA Standard and Compliance Workshop, OT, Cyber Attacks Awareness Malware/Ransom Ware / Virus /Trojan/ Philsing, Information Security Manager, Security System Installation and Maintenance, Security of Distributed Control System (DCS), Process Control, Instrumentation, Safeguarding & Security, Programmable Logic Controller (PLC), Siemens PLC Simatic S7-400/S7-300/S7-200, PLC & SCADA for Automation & Process Control, Artificial Intelligence, Allen Bradley PLC Programing and Hardware Trouble Shooting, Schneider SCADA System, Wonder Ware, Emerson, Honeywell, Honeywell Safety Manager PLC, Yokogawa, Advanced DCS Yokogawa, Endress & Hauser, Field Commissioning and Start up Testing Pre Operations, System Factory Acceptance Test (FAT), System Site Acceptance Test (SAT), SCADA HMI & PLC Control Logic, Implementation, Systems Testing, Commissioning and Startup, Foxboro DCS & Triconics, SIS Systems, Drives, Motion Control, Hydraulics, Pneumatics and Control Systems Engineering, Electrical & Automation Control Systems, HV/MV Switchgear, LV & MV Switchgears & Circuit Breakers, High Voltage Electrical Safety, LV & HV Electrical System, HV Equipment Inspection & Maintenance, LV Distribution Switchgear & Equipment, Electrical Safety, Electrical Maintenance, Transformers, Medium & High Voltage Equipment, Circuit Breakers, Cable & Overhead Line Troubleshooting & Maintenance, Electrical Drawing & Schematics, Voltage Distribution, Power Distribution, Filters, Automation System, Electrical Variable Speed Drives, Power Systems, Power Generation, Diesel Generators, Power Stations, Uninterruptible Power Systems (UPS), Battery Chargers, AC & DC Transmission, CCTV Installation, Data & Fire Alarm System, Evacuation Systems and Electrical Motors & Variable Speed Drives, & Control of Electrical and Electronic devices.

During Mr. Pretorius's career life, he has gained his practical experience through several significant positions and dedication as the Senior Technical Analyst, Team Leader, Pre-operations Startup Engineer, Automation System's Software Manager, Automation System's Senior Project Engineer, PLC Specialist, Site Manager, Senior Project & Commissioning Engineer, Technical Director, Project Engineer, Radio Technician, A T E Technician and Senior Instructor/Trainer from various companies like the ADNOC Sour Gas, Ras Al Khair Aluminum Smelter, Johnson Matthey Pty. Ltd, Craigcor Engineering, Unitronics South Africa Pty (Ltd), Bridgestone/Firestone South Africa Pty (Ltd) and South African Defense Force.

Mr. Pretorius's has a Higher Diploma in **Electrical Engineering Heavy Current**. Further, he is a **Certified Instructor/Trainer** and delivered numerous trainings, courses, workshops, seminars and conferences internationally.

IE0181 - Page 4 of 9

Course Fee

Abu Dhabi	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day
Al Khobar	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Doha	US\$ 6,000 per Delegate. This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Registration & Coffee
Welcome & Introduction
PRE-TEST
Introduction to OT Environments
Definition & Components of OT Systems • Differences Between IT & OT
Systems • Critical Importance of OT in Industrial Processes • Challenges
Specific to OT Environments
Break
Quality Management in OT
Definition & Objectives of Quality Management in OT • Role of Quality
Assurance in OT System Reliability • Key Quality Principles (Consistency,
Accuracy, Efficiency) • Stakeholders in OT Quality Management

IE0181 - Page 5 of 9

	Provide town Standards for OT Sustains
1030 - 1130	Regulatory Standards for OT Systems
	ISO 9001 & Its Relevance to OT • Industry-Specific Standards (IEC 62443,
	NERC CIP) • Compliance with Health, Safety, & Environmental Regulations •
	Impact of Non-Compliance on OT Operations
	Establishing Quality Objectives in OT
1120 1220	Defining Measurable Quality Goals • Aligning Objectives with Business &
1130 - 1230	<i>Operational Strategies</i> • <i>Incorporating Stakeholder Requirements</i> • <i>Examples of</i>
	OT-Specific Quality Objectives
1230 - 1245	Break
	Risk Management in OT Quality Assurance
10/5 1000	Identifying Risks in OT Systems • Risk Assessment Techniques (FMEA,
1245 - 1330	HAZOP) • Mitigation Strategies for Common OT Risks • Incorporating Risk
	Management into Quality Plans
	Roles & Responsibilities in OT Quality Management
1330 - 1420	Quality Managers versus OT Engineers • Collaboration Across Departments •
	Importance of Leadership in Quality Assurance • Training & Competency
	Development for OT Staff
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

Process Mapping & Documentation
Understanding OT Workflows & Processes • Creating Detailed Process Maps
for Quality Assurance • Identifying Critical Control Points in OT Processes •
Best Practices for Maintaining Accurate Documentation
Testing & Validation in OT Environments
Importance of Rigorous Testing in OT • Functional Testing for OT Devices &
Systems • Stress & Load Testing for System Reliability • Validation Techniques
for Real-Time Systems
Break
Calibration & Accuracy Assurance
Importance of Calibration in OT Equipment • Methods for Calibrating Sensors
& Actuators • Maintaining Accuracy in Data Acquisition Systems • Frequency
& Record-Keeping for Calibration Activities
Defect Management & Resolution
Identifying & Classifying Defects in OT Systems • Root Cause Analysis for
Recurring Defects • Tools for Defect Tracking & Reporting • Preventive
Measures to Minimize Defects
Break

IE0181 - Page 6 of 9

1245 - 1330	Quality Audits in OT Types of Quality Audits: Internal versus External • Preparing for an OT Quality Audit • Conducting Audits for Compliance & Improvement • Reporting Audit Findings & Implementing Recommendations
1330 - 1420	OT System Integration Testing Importance of Integration Testing in OT Environments • Verifying Communication Between Subsystems • Testing for Interoperability with Legacy Systems • Common Challenges in Integration Testing
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

0730 - 0830	Statistical Process Control (SPC)
	Fundamentals of SPC in Quality Assurance • Monitoring Key Performance
	Indicators KPIs in OT • Interpreting Control Charts & Data Trends • Using
	SPC for Proactive Quality Management
	Six Sigma & Lean Principles
0000 0000	Overview of Six Sigma Methodology • Applying DMAIC (Define, Measure,
0830 - 0930	Analyze, Improve, Control) in OT • Lean Principles for Waste Reduction in OT
	Processes • Combining Lean & Six Sigma for Maximum Efficiency
0930 - 0945	Break
	Automated Quality Monitoring Systems
0045 1100	Role of Automation in OT Quality Assurance • Examples of Automated
0945 - 1130	Quality Control Systems • Integrating Monitoring Tools with OT
	$\widetilde{Infrastructure}$ • Benefits & Limitations of Automation
	Change Management in OT Quality Assurance
	Managing Changes in OT Systems & Processes • Risk Assessment for System
1130 - 1230	Upgrades & Modifications • Ensuring Quality During Change Implementation
	• Documentation & Communication of Changes
1230 - 1245	Break
	Incident Management & Quality Control
	Detecting & Responding to Quality Incidents in OT •Incident Root Cause
1245 - 1330	Analysis & Corrective Actions • Learning from Incidents to Improve Quality
	Maintaining Records for Regulatory Compliance
	Continuous Improvement Strategies
	Importance of Kaizen in OT Environments • Identifying Opportunities for
1330 - 1420	Incremental Improvements • Tools for Continuous Quality Improvement
	•Engaging Employees in Quality Initiative
	Recap
1420 - 1430	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three
1700	

IE0181 - Page 7 of 9

Day 4	
0730 - 0830	Cybersecurity Threats in OT Environments Common Cyber Threats to OT Systems • Differences Between IT & OT Cybersecurity Challenges • Impact of Cybersecurity on Quality Assurance •
0830 - 0930	Real-World Examples of OT Cyber Incidents Quality Assurance in Secure Systems Integrating Cybersecurity with Quality Assurance Processes • Verifying the Security of OT Devices & Systems • Quality Checks for Secure Data
0930 - 0945	<i>Transmission</i> • <i>Importance of Access Control & Authentication</i> <i>Break</i>
0945 - 1130	Resilience & Recovery Planning Ensuring System Resilience During Disruptions • Role of Redundancy in Maintaining Quality • Disaster Recovery Planning for OT Systems • Testing Recovery Plans for Effectiveness
1130 - 1230	<i>Compliance with Cybersecurity Standards</i> <i>Overview of IEC 62443 & Its Relevance to Quality</i> • NERC CIP Standards for <i>Critical Infrastructure</i> • Ensuring Compliance with Cybersecurity Regulations • Role of Audits in Verifying Compliance
1230 - 1245	Break
1245 - 1330	<i>Incident Response & Quality Assurance</i> <i>Role of Quality Teams in Incident Response • Managing System Quality Post-</i> <i>Incident • Coordination Between Cybersecurity & Quality Teams • Learning</i> <i>from Incidents to Improve Security & Quality</i>
1330 - 1420	Practical Exercises: Simulated OT Quality ScenariosIdentifying & Mitigating Quality Issues in a Simulated OT SystemDeveloping a Response Plan for a Security-Related Quality BreachConducting a Mock Audit for OT Cybersecurity ComplianceDiscussion & Feedback on Simulation Outcomes
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Dav 5

Day 0	
0730 - 0830	Case Studies in OT Quality Management Review of Successful OT Quality Assurance Projects • Lessons Learned from Quality Failures in OT • Industry-Specific Case Studies (Manufacturing, Energy, Utilities) • Applying Insights from Case Studies to Real-World
	Scenarios
0830 - 0930	Emerging Trends in OT Quality AssuranceRole of Artificial Intelligence & Machine Learning • Predictive Maintenancefor Quality Assurance • Digital Twins & Their Application in OT Systems •Future Challenges & Opportunities in OT Quality Management
0930 - 0945	Break
0945 - 1130	Building a Quality Culture in OT Importance of a Quality-First Mindset • Training Programs for OT Teams • Leadership's Role in Promoting Quality • Recognizing & Rewarding Quality Achievements

IE0181 - Page 8 of 9

1130 - 1230	Performance Metrics for OT QualityKey Metrics to Measure OT System Quality• Setting Benchmarks forContinuous Improvement• Analyzing & Reporting Quality PerformanceData• Using Metrics to Guide Decision-Making
1230 - 1245	Break
1245 - 1345	Developing a Quality Assurance Plan Participants Design a Quality Assurance Plan for an OT System • Identifying Key Processes, Risks, & Controls • Integrating Quality Metrics & Monitoring Tools • Presenting & Discussing the Plan with Peers & Instructors
1345 - 1400	<i>Course Conclusion</i> Using this Course Overview, the Instructor(s) will Brief Participants about the Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes the real-life case studies and exercises:-

<u>Course Coordinator</u> Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>

IE0181 - Page 9 of 9

