

COURSE OVERVIEW IE0298 CCC Anti-Surge for Control

Course Title

CCC Anti-Surge for Control

Course Date/Venue

Please see page 3

Course Reference

IE0298

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

30 PDHs)

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of CCC Anti-Surge for Control. It covers the principles of compression, phenomenon of surge and significance of anti-surge control; the CCC's anti-surge solutions including the hardware, software, and other components of CCC antisurge control system; the surge control lines and performance curves; the guided instructions on the installation of controllers, sensors and related hardware; the step-by-step guide on setting up the software, configuring control parameters, and understanding the interface; and the techniques and best practices for tuning the control system for optimum performance.

During this interactive course, participants will learn to set-up alarms, use built-in diagnostic tools and integrate CCC with plant DCS/SCADA systems; ensure seamless communication between the CCC system and the plant's main control systems; addressing frequent issues faced in anti-surge control and their resolution; the additional features and functionalities for enhanced control and monitoring; and the best practices for maintaining the system and when/how to upgrade.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain systematic techniques on CCC Anti-Surge for Control
- Discuss the principles of compression, the phenomenon of surge and the significance of anti-surge control
- Identify CCC's anti-surge solutions including the hardware, software, and other components of CCC anti-surge control system
- Recognize surge control lines and performance curves as well as the guided instructions on the installation of controllers, sensors and related hardware
- Illustrate the step-by-step guide on setting up the software, configuring control parameters, and understanding the user interface
- Employ techniques and best practices for tuning the control system for optimum performance
- Set-up alarms, use built-in diagnostic tools and integrate CCC with plant DCS/SCADA systems
- Ensure seamless communication between the CCC system and the plant's main control systems
- Address frequent issues faced in anti-surge control and their resolution
- Explore additional features and functionalities for enhanced control and monitoring
- Implement best practices for maintaining the system and when/how to upgrade

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**®). The **H-STK**® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides all significant aspects and consideration of CCC anti-surge for control for process control engineers, process operators, maintenance engineers and technicians, instrumentation and control technicians, plant managers and supervisors, reliability engineers, process safety engineers, rotating equipment engineers, control system designers and those who are involved in the operation, maintenance, and control of centrifugal compressors to prevent surge, which is a critical issue in such systems.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Date/Venue

Session(s)	Date	Venue
1	June 30-July 04, 2025	Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
2	August 17-21, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
3	October 20-24, 2025	Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
4	December 21-25, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

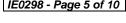
Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Sydney Thoresson, PE, BSc, is a Senior Electrical & Instrumentation Engineer with over 40 years of extensive experience within the Petrochemical, Utilities, Oil, Gas and Power industries. His specialization highly evolves in Process Control Instrumentation, Process Instrumentation & Control, Process Control, Instrumentation, Troubleshooting & Problem Solving, Process Instrumentation and Control Techniques, Instrumentation for Process Optimization and Control, Process Automation and Instrumentation Systems Integration, Troubleshooting in Process


Control Systems, Process Control & Safeguarding, Troubleshooting Instrumentation and Control Systems, GC Processes Troubleshooting and Control Systems, Practical Troubleshooting and Repair of Electronic Circuits, Process Control, Troubleshooting & Problem Solving. Process Control (PCI) & Safeguarding, Control Loop & Valve Tuning, Controller Maintenance Procedures, High Integrity Protection Systems (HIPS), Instrument Calibration & Maintenance, Instrumented Safety Systems, Compressor Control & Protection, Control Systems, Programmable Logic Controllers (PLC), SCADA System, PLC & SCADA - Automation & Process Control, PLC & SCADA Systems Application, Technical DCS/SCADA, PLC-SIMATIC S7 300/400: Configuration, Programming and Troubleshooting, PLC, Telemetry and SCADA Technologies, Cyber Security of Industrial Control System (PLC, DCS, SCADA & IED), Basics of Instrumentation Control System, DCS, Distributed Control System - Operations & Techniques, Distributed Control System (DCS) Principles, Applications, Selection & Troubleshooting, Distributed Control Systems (DCS) especially in Honeywell DCS, H&B DCS, Modicon, Siemens, Telemecanique, Wonderware and Adrioit, Safety Instrumented Systems (SIS), Safety Integrity Level (SIL), Emergency Shutdown (ESD), Emergency Shutdown System, Variable Frequency Drive (VFD). Process Control & Safeguarding, Field Instrumentation, Instrumented Protective Devices Maintenance & Testing, Instrumented Protective Function (IPF), Refining & Rotating Equipment, Equipment Operations, Short Circuit Calculation, Voltage Drop Calculation, Lighting Calculation, Hazardous Area Classification, Intrinsic Safety, Liquid & Gas Flowmetering, Custody Measurement, Ultrasonic Flowmetering, Loss Control, Gas Measurement, Flowmetering & Custody Measurement, Multiphase Flowmetering, Measurement and Control, Mass Measuring System Batching (Philips), Arc Furnace Automation-Ferro Alloys, Walking Beam Furnace, Blast Furnace, Billet Casting Station, Cement Kiln Automation, Factory Automation and Quality Assurance Accreditation (ISO 9000 and Standard BS 5750). Further, he is also well-versed in Electrical Safety, Electrical Hazards Assessment, Electrical Equipment, Personal Protective Equipment, Log-Out & Tag-Out (LOTO), ALARP & LOPA Methods, Confined Workspaces, Power Quality, Power Network, Power Distribution, Distribution Systems, Power Systems Control, Power Systems Security, Power Electronics, Electrical Substations, UPS & Battery System, Earthing & Grounding, Power Generation, Protective Systems, Electrical Generators, Power & Distribution Transformers, Electrical Motors, Switchgears, Transformers, AC & DC Drives, Variable Speed Drives & Generators and Generator Protection. He is currently the **Projects Manager** wherein he manages projects in the field of electrical and automation engineering and in-charge of various process hazard analysis, fault task analysis, FMEA and HAZOP study.

During Mr. Thoresson's career life, he has gained his thorough and practical experience through various challenging positions and dedication as the Contracts & Projects Manager, Managing Director, Technical Director, Divisional Manager, Plant Automation Engineer, Senior Consulting Engineer, Senior Systems Engineer, Electrical & Instrumentation Engineer, Consulting Engineer, Service Engineer and Section Leader from several international companies such as Philips, FEDMIS, AEG, DAVY International, BOSCH, Billiton and Endress/Hauser.

Mr. Thoresson is a Registered Professional Engineering Technologist and has a Bachelor's degree in Electrical & Electronics Engineering and a National Diploma in Radio Engineering. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and an active member of the International Society of Automation (ISA) and the Society for Automation, Instrumentation, Measurement and Control (SAIMC). He has further delivered numerous trainings, courses, seminars, conferences and workshops worldwide.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

<u> </u>	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0020 0020	Introduction & Course Objectives
0830 - 0930	Overview, Expectations and Goals of the Training
0930 - 0945	Break
0045 1100	Basics of Compression & Surge
0945 – 1100	The Principles of Compression and the Phenomenon of Surge
1100 – 1215	Basics of Compression & Surge (cont'd)
1100 - 1213	The Principles of Compression and the Phenomenon of Surge (cont'd)
1215 - 1230	Break
	Significance of Anti-Surge Control
1230 - 1420	Why Anti-Surge Control is Essential and the Potential Risks Associated with
	Surge
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2

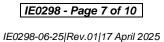
0730 - 0930	CCC's Anti-Surge Solutions CCC's Offerings in the Domain of Anti-Surge Control
0930 - 0945	Break
0945 - 1100	Components of CCC Anti-Surge Control System
	Hardware, Software and other Components of the System
1100 - 1230	Components of CCC Anti-Surge Control System (cont'd)
1100 - 1250	Hardware, Software and other Components of the System (cont'd)
1230 - 1245	Break
1245 - 1420	Surge Control Lines & Performance Curves
	Performance Curves and How to Determine the Surge Control Line
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3

, -	
0720 0020	Installation of CCC Anti-Surge Hardware
0730 - 0930	Guided Instructions on the Installation of Controllers, Sensors and Related
	Hardware
0930 - 0945	Break
	Configuring the Anti-Surge Control Software
0945 - 1100	Step-By-Step Guide on Setting Up the Software, Configuring Control
	Parameters and Understanding the User Interface
Configuring the Anti-Surge Control Software (cont'd)	
1100 - 1230	Step-By-Step Guide on Setting Up the Software, Configuring Control
	Parameters and Understanding the User Interface (cont'd)

1230 - 1245	Break
1245 – 1420	Tuning & Calibration Techniques and Best Practices for Tuning the Control System for Optimum Performance
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4


Day 4	
	Alarm Management & Diagnostics
0730 - 0930	Setting up Alarms, Understanding their Significance and Using Built-In
	Diagnostic Tools
0930 - 0945	Break
	Integration with Plant DCS/SCADA Systems
0945 - 1100	Ensuring Seamless Communication Between the CCC System and the Plant's
	Main Control Systems
	Integration with Plant DCS/SCADA Systems (cont'd)
1100 - 1230	Ensuring Seamless Communication Between the CCC System and the Plant's
	Main Control Systems (cont'd)
1230 - 1245	Break
1245 1420	Common Troubleshooting Scenarios
1245 – 1420	Addressing Frequent Issues Faced in Anti-Surge Control and Their Resolution
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5

Day 0	
0730 - 0830	Advanced Features of CCC Anti-Surge System Exploring Additional Features and Functionalities for Enhanced Control and Monitoring
0930 - 0945	Break
0945 - 1100	Maintenance & Upgrades Best Practices for Maintaining the System and When/How to Upgrade
1100 – 1230	Maintenance & Upgrades (cont'd) Best Practices for Maintaining the System and When/How to Upgrade (cont'd)
1230 - 1245	Break
1245 - 1345	Case Study Analysis Discussion on Real-World Scenarios Where CCC Anti-Surge Control Played a Crucial role • Analyzing Challenges, Solutions, and Outcomes
1345 - 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using one of our state-of-the-art simulators "Allen Bradley SLC 500", "AB Micrologix 1000 (Digital or Analog)", "AB SLC5/03", "AB WS5610 PLC", "Siemens S7-1200", Siemens S7-400" "Siemens SIMATIC S7-300", "Siemens S7-200" "GE Fanuc Series 90-30 PLC", "Siemens SIMATIC Step 7 Professional Software", and "HMI SCADA".

Allen Bradley SLC 500 Simulator

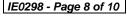
Allen Bradley Micrologix 1000 Simulator (Analog)

Allen Bradley WS5610 PLC **Simulator PLC5**

Allen Bradley Micrologix 1000 Simulator (Digital)

Allen Bradley SLC 5/03

Siemens S7-1200 Simulator

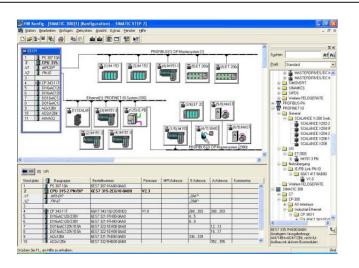


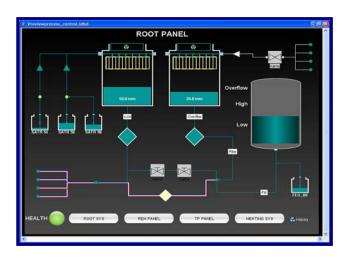
Siemens S7-400 Simulator

Siemens SIMATIC S7-300

Siemens S7-200 Simulator

GE Fanuc Series 90-30 PLC Simulator





Siemens SIMATIC Step 7 Professional Software

HMI SCADA

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

