

COURSE OVERVIEW DE1090 Petrel Static Modelling

O CEUS (30 PDHs)

AWA

Course Title

Petrel Static Modelling

Course Date/Venue

August 18-22, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Petrel Static Modelling. It covers the Petrel software environment, creating a new project and importing well data and seismic and map data; the well data management, seismic data handling and surface and fault interpretation basics; importing contour and structure maps, converting maps to surfaces, creating base maps for visualization and integrating GIS data; the fault modelling, horizon modelling, pillar gridding process and corner point gridding; and the structural framework building, zonation and layering.

Further, the course will also discuss the well correlation and interpretation, lithofacies modelling, petrophysical property modelling and saturation modelling; the trend and variogram analysis and quality control of property models; and the rock typing, property cutoffs, volume computation methods and volume sensitivity analysis.

DE1090 - Page 1 of 8

During this interactive course, participants will learn the grid coarsening techniques, property upscaling workflows, exporting to simulation grids and QC of simulationready models; the uncertainty and sensitivity analysis, history matching preparation and model revisions and iterations; and preparing simulation input, upscaling properties and setting up grid compatibility.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on Petrel static modelling
- Navigate Petrel software environment, create a new project and import well data and seismic and map data
- Carryout well data management, seismic data handling and surface and fault interpretation basics
- Import contour and structure maps, convert maps to surfaces, create base maps for visualization and integrate GIS data
- Illustrate fault modelling, horizon modelling, pillar gridding process, corner point gridding, structural framework building and zonation and layering
- Apply well correlation and interpretation, lithofacies modelling, petrophysical property modelling and saturation modelling
- Employ trend and variogram analysis and quality control of property models
- Identify rock typing and apply property cutoffs, volume computation methods and volume sensitivity analysis
- Employ grid coarsening techniques, property upscaling workflows, export to simulation grids and qc of simulation-ready models
- Apply uncertainty and sensitivity analysis, history matching preparation and model revisions and iterations
- Prepare simulation input, identify upscaling properties and set-up grid compatibility

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of Petrel static modelling for geologists, geophysicists, reservoir engineers, petrophysicists, subsurface data analysts, exploration and production (E&P) professionals, geoscience technicians and technical assistants, professionals involved in static reservoir modeling and field development planning and other technical staff.

DE1090 - Page 2 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

• **BA**

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

<u>Course Fee</u>

US\$ 8,000 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

DE1090 - Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. John Petrus, PhD, MSc, BSc, is a Senior Reservoir Engineer & Geologist with over 30 years of onshore & offshore experience within the Oil & Gas, Refinery and Petroleum industries. His wide experience covers in the areas of Advanced Pressure-Volume-Temperature (PVT), Production Technology & Engineering, Well Completions, Well Logs, Well Stimulation & Production Logging, Well Completion Design & Operation, Well Surveillance, Well Testing, Well Stimulation & Control and Workover Planning, Completions & Workover, Hole Cleaning & Logging, Servicing and Work-Over Operations, Wellhead Operations, Maintenance & Testing, Petrophysics/Interpretation of Well Composite, Reservoir & Tubing Performance, Practical Reservoir Engineering, Clastic Exploration & Reservoir Sedimentology, Carbonate Reservoir Characterization

& Modeling, Seismic Interpretation, Mapping & Reservoir Modelling, Reservoir Geology, Integrating Geoscience into Carbonate Reservoir Management, Faulted & Fractured Reservoirs, Fractured Hydrocarbon Reservoirs, Analyses, Characterisation & Modelling of Fractured Reservoirs & Prospects, Fracture Reservoir Modeling Using Petrel, Reservoir Engineering Applied Research, Artificial Lift, Artificial Lift System Selection & Design, Electrical Submersible Pumps (ESP), Enhance Oil Recovery (EOR), Hydraulic Fracturing, Sand Control Techniques, Perforating Methods & Design, Perforating Operations, Petroleum Exploration & Production, Hydrocarbon Exploration & Production, Exploration & Production, Play Assessment & Prospect Evaluation, Formation Evaluation, Petroleum Engineering Practices, Petroleum Hydrogeology & Hydrodynamics, Project Uncertainty, Decision Analysis & Risk Management, Decision Analysis & Uncertainty Management, Exploration & Development Geology, Sedimentology & Sequence Stratigraphy, Structural Interpretation in Exploration & Development, Petrel Geology, Geomodeling, Structural Geology, Applied Structural Geology in Hydrocarbon Exploration, Petrophysics, Geology of the Oil & Gas Field, Geophysics, Geothermal, Geochemical & Geo-Engineering and Drilling Applied Research, Field Geological Outcrop Mapping & Digital Cartography, Geological Modelling, Geoscience Management in E&P, Geoscience Modelling, Geological Mapping, Structural Geology-Tectonics, Structural Analysis, Tectonic Modelling and Numerical Simulation of Fractured Prospects & Reservoirs, Fracture Network Analysis & Modelling, Prospect Generation, Global Networking, Research and Technology Development Management for Fault & Fracture Analyses & Modelling, Fracture Modelling, Dynamic Modelling, Field Development Planning, Water Injection Planning, Stereophotogrammetry, Fault Mapping, GPS Survey, 2D & 3D Seismic Acquisition & Processing, 3D Seismic Surveys & Mapping, 3D GIS, GMAP, Sandbox Modelling, Sedimentological Logging, GR Logging, Surface & Subsurface 3D Modelling, Best Practices Management System (BPMS), Subsurface Work for Energy Projects, Digitalization Projects, Structural Model using Petrel, G&G Seismic & Well Data Modelling, GIS System Management, Database Management, Strategic Planning, Best Practices and Workflow, Quality Management, Project Management and Risk Assessment & Uncertainty Evaluation. Further, he is also well-versed in seismic interpretation, mapping & reservoir modelling tools like Petrel software, LandMark, Seisworks, Geoframe, Zmap and has extensive knowledge in MSDos, Unix, AutoCAD, MAP, Overlay, Quicksurf, 3DStudio, Esri ArcGIS, Visual Lisp, Fortran-77 and Clipper. Moreover, he is a world expert in analysis and modelling of fractured prospects and reservoirs and a specialist and developer of fracture modelling software tools such as FPDM, FMX and DMX Protocols.

During his career life, Dr. Petrus held significant positions and dedication as the **Executive Director**, **Senior Geoscience Advisor**, **Exploration Manager**, **Project Manager**, **Manager**, **Chief Geologist**, **Chief of Exploration**, **Chief of Geoscience**, **Senior Geosciences Engineer**, **Senior Explorationist**, **Senior Geologist**, **Geologist**, **Senior Geoscientist**, **Geomodeller**, **Geoscientist**, **CPR Editor**, **Resources Auditor**, **Project Leader**, **Technical Leader**, **Team Leader**, **Scientific Researcher** and **Senior Instructor/Trainer** from various international companies and universities such as the Dragon Oil Holding Plc., ENOC, MENA, ENI Group of Companies, Ocre Geoscience Services (OGS), Burren RPL, Ministry of Oil-Iraq, Eni Corporate University, Standford University, European Universities, European Research Institutes, NorskHydro Oil Company, Oil E&P Companies, just to name a few.

Dr. Petrus has a PhD in Geology and Tectonophysics and Master's and Bachelor's degree in Earth Sciences from the Utrecht University, The Netherlands. Further, he is a Certified Instructor/Trainer, a Certified Trainer/Assessor/Internal Verifier by the Institute of Leadership & Management (ILM), a Secretary and Treasurer of Board of Directors of Multicultural Centre, Association Steunfonds SSH/SSR and Founding Member of Sfera Association. He has further published several scientific publications, journals, research papers and books and delivered numerous trainings, workshops, courses, seminars and conferences internationally.

DE1090 - Page 4 of 8

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Monday, 18 th of August 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Overview of Petrel Software Environment
0830 - 0930	Interface Layout & Modules • Project Structure & Data Tree • Navigation Tools
	& Viewers • Understanding Workflows & Processes
0930 - 0945	Break
	Project Initialization & Data Import
0945 - 1045	Creating a New Project • Coordinate Reference Systems • Importing Well Data
	(LAS Deviation Surveys) • Importing Seismic & Map Data
	Well Data Management
1045 - 1145	Well Header & Trajectory Creation • Checking & Editing Deviation Surveys •
	Creating Logs & Cross-Sections • Quality Control of Well Data
	Seismic Data Handling
1145 - 1230	Loading 2D/3D Seismic Volumes • Display & Interpretation Basics • Time-
	Depth Conversion Principles • Seismic Data QC
1230 - 1245	Break
	Surface & Fault Interpretation Basics
1245 – 1330	Introduction to Interpretation Techniques • Creating & Editing Fault Sticks •
	Creating Horizons from Seismic • Fault Model QC & Refinement
	Map & Grid Handling in Petrel
1330 - 1420	<i>Importing Contour & Structure Maps • Converting Maps to Surfaces • Creating</i>
	Base Maps for Visualization • Integrating GIS Data
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	<i>Topics that were Discussed Today and Advise Them of the Topics to be Discussed</i>
1420	
1430	Lunch & End of Day One
	DE1090 - Page 5 of 8

Day 2:	Tuesday, 19 th of August 2025
0730 - 0830	Fault Modelling Creating Fault Frameworks • Inputting Fault Sticks or Polygons • Fault
	Grouping & Hierarchy • Fault Model Consistency Checks
	Horizon Modelling
0830 – 0930	<i>Creating Interpreted Horizons</i> • <i>Snapping & Auto-Tracking Tools</i> • <i>Horizon Editing & Smoothing</i> • <i>Linking Horizons with Faults</i>
0930 - 0945	Break
	Pillar Gridding Process
0945 - 1130	Generating a Pillar Grid • Defining Grid Geometry & Extent • Fault & Horizon
	Intersection Handling • Grid QC & Refinement
	Corner Point Gridding
1130 - 1230	Creating Corner Point Grids from Pillars • Fault Throw Handling • Grid
	Layering & Layering Control • Corner Point Grid Visualization
1230 - 1245	Break
	Structural Framework Building
1245 - 1330	Combining Faults & Horizons • Ensuring Geological Consistency • Creating
	Stratigraphic Framework • Modifying Stratigraphic Surfaces
1220 1420	Zonation & Layering
1330 - 1420	Defining Zones & Layering Schemes • Thickness & Layering Rules • Creating
	<i>Fine Layers for Property Modeling</i> • <i>QC</i> & <i>Visualization of Zones</i>
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	<i>Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow</i>
1430	Lunch & End of Day Two

Day 3:	Wednesday, 20 th of August 2025
0730 - 0830	Well Correlation & Interpretation
	Cross-Section Generation • Correlating Lithological Units • Picking Tops &
	Markers • Well Panel QC
	Lithofacies Modelling
0830 – 0930	Defining Facies Codes & Interpretations • Facies Modeling Methods (Indicator
	<i>Object)</i> • <i>Stochastic Facies Distribution</i> • <i>QC & Visualization of Facies</i>
0930 - 0945	Break
0045 1120	Petrophysical Property Modelling
	Importing Log Properties (Porosity Permeability) • Property Upscaling
0945 – 1130	Techniques • Variogram Creation & Analysis • 3D Property Distribution
	(Kriging SGS)
	Saturation Modelling
1130 - 1230	Importing Saturation Logs • Saturation Height Functions • Free Water Level &
	Contacts • Generating Saturation Models
1230 - 1245	Break
	Trend & Variogram Analysis
1245 - 1330	Structural & Geological Trends • Variogram Setup & Modeling • Anisotropy &
	Spatial Correlation • Sensitivity & Uncertainty Review

DE1090 - Page 6 of 8

1330 - 1420	Quality Control of Property Models
	Cross-Plots & Histograms • Vertical Section Checks • Property Map Generation
	Comparing with Well Data
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	<i>Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow</i>
1430	Lunch & End of Day Three
1450	Lunch & Enu of Duy Three
Day 4:	Thursday, 21 st of August 2025
	Rock Typing & Cutoffs
0730 - 0830	Defining Rock Types • Applying Property Cutoffs • Creating Net-to-Gross
	Models • Rock Type QC
	Volumetric Calculations
0830 - 0930	Defining Reservoir Zones • Volume Computation Methods
0830 - 0930	(Deterministic/Probabilistic) • STOIIP/GIIP Estimation • Volume Sensitivity
	Analysis
0930 - 0945	Break
	Upscaling for Simulation
0945 – 1130	Grid Coarsening Techniques • Property Upscaling Workflows • Export to
	Simulation Grids • QC of Simulation-Ready Models
	Uncertainty & Sensitivity Analysis
1130 - 1230	Defining Uncertain Parameters • Running Multiple Realizations • P10/P50/P90
	Models • Visualizing Uncertainty
1230 - 1245	Break
	History Matching Preparation
1245 - 1330	Model Review for History Matching • Data Preparation for Dynamic Modelling
	Exporting Static Model to Simulators • Integration with Eclipse CMG
1000 1100	Model Revisions & Iterations
1330 - 1420	Feedback from Dynamic Model • Updating Static Model Based on New Data •
	Structural Adjustments • Re-Modeling of Properties
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	<i>Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow</i>
1430	
1430	Lunch & End of Day Four

Day 5:	Friday, 22 nd of August 2025
	Real Field Case Study: Structural Modelling
0730 – 0830	Geological Setting Overview • Importing & Interpreting Field Data • Fault &
	Horizon Framework Setup • Building the Structural Grid
	Real Field Case Study: Property Modelling
0830 - 0930	Well Log Analysis • Defining Lithofacies & Properties • Generating Property
	Models • QC of Outputs Against Field Data
0930 - 0945	Break
	Volumetric Estimation Case
0945 - 1130	Net Reservoir Porosity Saturation Calculation • Applying Cutoffs • Computing
	STOIIP/GIIP • Reporting Results

DE1090 - Page 7 of 8

	Static to Dynamic Model Integration
1130 - 1230	Preparing Simulation Input • Upscaling Properties • Setting Up Grid
	<i>Compatibility</i> • <i>Export for Simulation</i>
1230 - 1245	Break
1245 - 1345	Hands-On Group Exercise
	Team-Based Modeling of a New Dataset • Division of Tasks (Structure Facies
	Properties) • Cross-Checks & Presentations • Peer Review & Discussion
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using one of our state-of-the-art simulators "Petrel software".

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

DE1090 - Page 8 of 8

