

COURSE OVERVIEW IE0098 Advancement in RTU Communication & **Automation Systems**

CEUS

(30 PDHs)

AWARD

0

Course Title

Advancement in RTU Communication & Automation Systems

Course Date/Venue

- Session 1: April 07-11, 2025/Ajman Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
- Session 2: October 19-23, 2025/Aiman Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

IE0098

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide delegates with a detailed and up-to-date overview of Advancement in RTU Communication & Automation Systems. It covers the purpose of RTUs, the key differences of RTU and PLC and the common industries using RTUs; the RTU hardware architecture, RTU communication protocol and advances in communication media; the common vulnerabilities in RTU system; the importance of data encryption, authentication and access control and cybersecurity standards; the modbus RTU & TCP/IP, DNP3 protocol and IEC protocols in RTUs; and the basics of MQTT protocol, publishing/subscribing model in RTU system and integrating MQTT with industrial IoT platforms.

Further, the course will also discuss the role of protocol converters and gateway configurations; the SCADA system integration and PLC and RTU interfacing; the remote monitoring and control covering real-time data acquisition, web-based RTU monitoring, cloud integration with RTUs and fault detection and diagnostics; the edge computing concepts and the benefits of edge analytics; the redundancy and reliability in RTU systems; the role of RTUs in data collection and basic principles of predictive maintenance; and integrating RTU data with analytics platforms and dashboard and reporting tools.

IE0098 - Page 1 of 14

During the interactive course, participants will learn the artificial intelligence in automation systems, RTUs in smart grids and wireless sensor networks (WSN); reducing the RTU energy consumption, optimizing communication processes and design eco-friendly RTUs; the project management in RTU system deployment covering RTU system implementation, budgeting and resource allocation, risk management in RTU project and evaluating project success; the future trends in RTU communication comprising of advancements in IIoT for RTUs, integration of blockchain in RTU system, role of quantum communication in automation and predictions for RTU evolution; the preventive maintenance best practices, diagnosing communication failures, updating RTU firmware and software and remote troubleshooting techniques; and the system requirements, selecting hardware and protocols, design scalability and redundancy and building a cybersecurity strategy.

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Apply and gain a comprehensive knowledge on the advancement in RTU communication and automation systems
- Discuss the purpose of RTUs, the key differences of RTU and PLC and the common industries using RTUs
- Explain the RTU hardware architecture, RTU communication protocol and advances in communication media
- Identify the common vulnerabilities in RTU systems, importance of data encryption, authentication and access control and cybersecurity standards
- Recognize modbus RTU & TCP/IP, DNP3 protocol and IEC protocols in RTUs
- Discuss the basics of MQTT protocol, publish/subscribe model in RTU systems and integrate MQTT with industrial IoT platforms
- Define the role of protocol converters and apply gateway configurations, SCADA system integration and PLC and RTU interfacing
- Employ remote monitoring and control covering real-time data acquisition, web-based RTU monitoring, cloud integration with RTUs and fault detection and diagnostics
- Describe edge computing concepts and the benefits of edge analytics as well as redundancy and reliability in RTU systems
- Discuss the role of RTUs in data collection, basic principles of predictive maintenance, integrating RTU data with analytics platforms and dashboard and reporting tools
- Recognize artificial intelligence in automation systems, RTUs in smart grids and wireless sensor networks (WSN)
- Reduce RTU energy consumption, optimize communication processes and design ecofriendly RTUs
- Apply project management in RTU system deployment covering RTU system implementation, budgeting and resource allocation, risk management in RTU project and evaluating project success

IE0098 - Page 2 of 14

- Discuss the future trends in RTU communication comprising of advancements in IIoT for RTUs, integration of blockchain in RTU system, role of quantum communication in automation and predictions for RTU evolution
- Employ preventive maintenance best practices, diagnosing communication failures, updating RTU firmware and software and remote troubleshooting techniques
- Identify system requirements, select hardware and protocols, design scalability and redundancy and build a cybersecurity strategy

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of advancement in RTU communication and automation systems for automation engineers, control systems engineers, electrical engineers, instrumentation engineers, SCADA system operators/engineers, telecommunication engineers, project managers, technical support and maintenance staff, system integrators and other technical staff.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours: -

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

IE0098 - Page 3 of 14

Course Certificate(s)

(1) Internationally recognized Competency Certificates and Plastic Wallet Cards will be issued to participants who completed a minimum of 80% of the total tuition hours and successfully passed the exam at the end of the course. Certificates are valid for 5 years.

Recertification is FOC for a Lifetime.

Sample of Certificates

The following are samples of the certificates that will be awarded to course participants: -

IE0098 - Page 4 of 14

(2) Official Transcript of Records will be provided to the successful delegates with the equivalent number of ANSI/IACET accredited Continuing Education Units (CEUs) earned during the course.

	* Haward Technology * CEUs * Haward Technology * CEUs * Haward Technology * CEUs * Haward Technology *	
* Haward Technology *	Haward Technology Middle East CEUS Continuing Professional Development (HTME-CPD) CEU Official Transcript of Records CEU Official Transcript of Records	* Haward Technology *
SN.	HTME No. 74851	CE
y * CE	Participant Name: Waleed Al Habeeb	Us * H
chnolog	Program Ref. Program Title Program Date No. of Contact Hours CEU's	award
ard Te	IE0098 Advancement in RTU Communication & November 11-15, 2023 30 3.0	Techno
nd Technology * CEUs	Total No. of CEU's Earned as of TOR Issuance Date 3.0 TRUE COPY Jaryl Castillo Academic Director	CEUS * Haward Techn
* CEUs * Haw	Haward Technology has been approved as an Accredited Provider by the International Association for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Hendon, VA 20171, USA. In obtaining this approval, Haward Technology has demonstrated that it complies with the ANSI/IACET 1-2018 Standard which is widely recognized as the standard of good practice internationally. As a result of their Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for programs that qualify under the ANSI/IACET 1-2018 Standard. Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Association for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.	Top * CEUS
* Haward Technology *	Haward Technology is accredited by Image: A state of the	Manuel Technology *
	* Haward Technology * CEUs * Haward Technology * CEUs * Haward Technology * CEUs * Haward Technology *	

IE0098 - Page 5 of 14

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

IE0098 - Page 6 of 14

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. John Vorster, MSc, BTech, is a Senior Instrumentation, Control & Energy Engineer with over 25 years of industrial experience within the Oil, Gas, Process, Refinery, Power and Nuclear industries. His wide expertise includes Programmable Logic Controller (PLC), Process Control Design & Plant Modelling, Instrumentation, Automation, Process Control Instrumentation, Process Control, SCADA System, Introduction to SCADA, PLC & SCADA for Automation & Process Control, Distributed Control System

(DCS), Instrumentation & Safeguarding, Process Control Measurement, Pressure Measurements, Temperature Measurements, Level Measurement, Flow Measurement, Control Valves & Actuators, Energy Management System Awareness, Renewable Energy, Energy Conservation & Technologies, Utility Systems, Nuclear Energy, Distributed Energy Systems, Natural Gas Distribution, Field Indication Instruments, P&ID & Technical Specification, Test Equipment Calibration, Field Bus & Field Communications, Testing, Calibration & Maintenance of Flow, Level, Pressure & Temperature, Loss Control & Multiphase Flowmetering, Custody Measurement & Loss Control, Flow Measurement & Custody Measurement, Flow Computer, Turbine Flowmeters, Ultrasonic Flowmeter, Positive Displacement Flowmeter, Coriolis Flowmeter, Flow Rate Corrections, Pressure Flow Transmitters, Pressure Methods, Flow Nozzles, Orifice Plates, Venturi Tubes, Pitot Tubes, Analyzer Measurement Systems, Pressure Management, Selection & Sizing of all Instrumentation, SIL Criteria, Calibration & Configuration of Installed Instrumentation, Bearing Replacement and Control Valves. Further, he is also well-versed in HAZOP, LOPA Studies, Radiation Protection, Hazardous Substances, Hazardous Area Classification, Nuclear Devices Maintenance, Loop Drawings, Loop Calculations, Engineering Drawings, Shutdown Maintenance & Planning, Asset Management, Six Sigma, Energy Management Measurements, Project Management, Strategic Resource Planning, Budget Preparation, ISO 9001, ISO 14000 and ISO 18000 standards. He is currently the Instrumentation Analyzer & Engineer of Sasolburg wherein he is in-charge of the design and monitoring of the analyzer measurement systems.

During his career life, Mr. Vorster has gained his practical and field experience through his various significant positions and dedication as the Project Manager, Senior Trainer/Instructor, Senior Instrumentation Engineer, Instrumentation Engineer, Green Belt Project Leader. Instrumentation Technologist, Senior Instrumentation/Electrical Artisan. Instrumentation Artisan and Apprentice Instrumentation for numerous international companies including Sasolburg, DOW Chemical Company, Safripol and Iscor.

Mr. Vorster has a Master's degree in Engineering Development & Management, as well as a Bachelor's of Technology degree and a National Diploma in Electrical Engineering. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM), an Appointed Radiation Protection Officer and a Qualified Instrument Mechanician. Moreover, he is an active member of Project Management Institution (PMI) and South African Institute of Measure and Control (SAIMC) and has delivered numerous courses, workshops, conferences and seminars internationally.

IE0098 - Page 7 of 14

<u>Course Program</u> The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day I	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 – 0900	<i>Introduction to RTU Systems</i> Definition & Purpose of RTUs • Historical Evolution of RTU Systems • RTU versus PLC: Key Differences • Common Industries Using RTUs
0900 - 0930	RTU Hardware Architecture RTU Processor Units • I/O Modules & Configurations • Power Supply Systems • Environmental Considerations (Temperature, Humidity, etc.)
0930 - 0945	Break
0945 – 1100	RTU Communication Protocols Overview Serial Communication (RS-232, RS-485) • Modbus Protocol Basics • DNP3 Protocol Fundamentals • Introduction to IEC 60870-5
1100 – 1230	<i>Advances in Communication Media</i> <i>Fiber-Optic Communication • Wireless Communication in RTUs • Satellite</i> <i>Communication for Remote RTUs • Cellular Technologies (4G/5G)</i>
1230 – 1245	Break
1245 – 1330	Cybersecurity in RTU Communication Common Vulnerabilities in RTU Systems • Importance of Data Encryption • Authentication & Access Control • Cybersecurity Standards (e.g., NERC CIP, IEC 62351)
1300 – 1420	<i>Hands-on Activity: Basic RTU Configuration</i> Setting up an RTU System • Connecting Basic I/O Devices • Monitoring Real-Time Data using Modbus
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

	Modbus
0730 - 0830	Modbus RTU versus Modbus TCP/IP • Addressing & Function Codes • Modbus
	Mapping • Troubleshooting Common Modbus Issues
	Understanding DNP3 Protocol
0830 - 0930	Role of DNP3 in SCADA System • Event-Driven versus Polling Mechanisms •
	DNP3 Object Groups & Variations • Secure Authentication in DNP3
0930 - 0945	Break
	IEC Protocols in RTUs
0945–1100	Introduction to IEC 61850 • Key Features & GOOSE Messaging • Comparison with
	IEC 60870-5 • Practical Applications in Substations
	MQTT & IIoT Integration
1100 – 1230	Basics of MQTT protocol • Publish/Subscribe Model in RTU Systems • Integration
	with Industrial IoT Platforms • Security Considerations in MQTT
1230 - 1245	Break

IE0098 - Page 8 of 14

	Protocol Conversion & Gateways
1245 – 1300	Role of Protocol Converters • Gateway Configurations • Challenges in Protocol
	Conversion • Case studies: Multi-Protocol RTU Systems
	Hands-on Activity: Protocol Analysis
1300 – 1420	Simulating Modbus & DNP3 communication • Capturing Data Packets using
	Wireshark • Analyzing Protocol Performance
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the Topics
	that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

	SCADA System Integration
0730 – 0900	RTU as a Data Source for SCADA • RTU-SCADA Communication Workflows •
	Alarm & Event Management • Data Visualization Best Practices
	PLC & RTU Interfacing
0900 - 0930	RTU-PLC Communication Methods • Protocol Compatibility • Case Study: Hybrid
	Automation Systems • Challenges in RTU-PLC Integration
0930 - 0945	Break
	Remote Monitoring & Control
0945 – 1100	Real-Time Data Acquisition • Web-based RTU Monitoring • Cloud Integration with
	RTUs • Fault Detection & Diagnostics
	Edge Computing in RTUs
1100 – 1230	Overview of Edge Computing Concepts • Benefits of Edge Analytics • Real-Time
	Decision-Making at the RTU Level • Use Cases for Edge RTUs
1230 – 1245	Break
	Redundancy & Reliability in RTU Systems
1245 – 1330	Dual Communication Paths • Hot Standby Configurations • Fault-Tolerant Designs
	Testing & Maintenance Strategies
	Hands-on Activity: SCADA-RTU Integration
1330 – 1420	Configuring RTUs for SCADA Systems • Implementing Alarms & Notifications •
	Simulating System Failures & Recovery
	Recap
1420 – 1430	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the Topics</i>
	that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

	Data Analutics & RTU Systems
0730 - 0830	Role of RTUs in Data Collection • Basic Principles of Predictive Maintenance •
	Integrating RTU Data with Analytics Platforms • Dashboards & Reporting Tools
	Artificial Intelligence in Automation Systems
0830 - 0930	AI Applications in RTU-Based Automation • Machine Learning for Fault Prediction
	• Neural Networks for Process Optimization • Case Studies: AI-Driven RTU Systems
0930 - 0945	Break
	RTUs in Smart Grids
0045 1020	Role of RTUs in Smart Grid Automation • Load Balancing & Demand Response •
0945 - 1050	Integration with Renewable Energy Sources • Standards & Regulations for Smart
	Grids
	Wireless Sensor Networks (WSN) & RTUs
1030 – 1130	Basics of WSN for Industrial Automation • RTU-WSN Integration Workflows •
	Power Management in Wireless Sensors • Emerging Technologies in WSN

IE0098 - Page 9 of 14

IE0098-04-25|Rev.00|09 January 2025

UKAS

ACCREDITED ILM

1130 - 1230	Energy Efficiency in RTU Systems Reducing RTU Energy Consumption • Optimizing Communication Processes • Energy Harvesting Technologies • Designing Eco-Friendly RTUs
1230 - 1245	Break
1245 - 1420	Hands-on Activity: Advanced Configuration Configuring AI Tools with RTU Data • Implementing a Smart Grid Use Case • Deploying WSN with RTUs
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

	Project Management in RTU System Deployment
0730 - 0830	Steps in RTU System Implementation • Budgeting & Resource Allocation • Risk
	Management in RTU Projects • Evaluating Project Success
	Future Trends in RTU Communication
0830 - 0930	Advancements in IIoT for RTUs • Integration of Blockchain in RTU Systems • Role of
	<i>Quantum Communication in Automation</i> • <i>Predictions for RTU Evolution</i>
0930 - 0945	Break
	RTU Maintenance & Troubleshooting
0945 – 1030	Preventive Maintenance Best Practices • Diagnosing Communication Failures •
	Updating RTU Firmware & Software • Remote Troubleshooting Techniques
	Case Studies & Real-world Applications
1030 - 1230	RTUs in Oil & Gas • RTUs in Water & Wastewater Management • RTUs in
	Transportation Systems • Lessons Learned from Industry Failures
1230 – 1245	Break
	Designing a Robust RTU System
1245 - 1300	Identifying System Requirements • Selecting Hardware & Protocols • Designing for
	Scalability & Redundancy • Building a Cybersecurity Strategy
	Course Conclusion
1300 - 1315	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the Course</i>
	Topics that were Covered During the Course
1315 – 1415	COMPETENCY EXAM
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

IE0098 - Page 10 of 14

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using one of our state-of-the-art simulators "Allen Bradley SLC 500", "AB Micrologix 1000 (Digital or Analog)", "AB SLC5/03", "AB WS5610 PLC", "Siemens S7-1200", "Siemens S7-400", "Siemens SIMATIC S7-300", "Siemens S7-200", "GE Fanuc Series 90-30 PLC", "Siemens SIMATIC Step 7 Professional Software", "HMI SCADA", "Gas Ultrasonic Meter Sizing Tool", "Liquid Turbine Meter and Control Valve Sizing Tool", "Liquid Ultrasonic Meter Sizing Tool", "Orifice Flow Calculator", "Automation Simulator" and "PLCLogix 5000 Software".

Allen Bradley SLC 500 Simulator

Allen Bradley Micrologix 1000 Simulator (Analog)

Allen Bradley WS5610 PLC Simulator PLC5

Allen Bradley Micrologix 1000 Simulator (Digital)

Allen Bradley SLC 5/03

Siemens S7-1200 Simulator

IE0098 - Page 11 of 14

Siemens S7-400 Simulator

Siemens SIMATIC S7-300

Siemens S7-200 Simulator

GE Fanuc Series 90-30 PLC Simulator

Siemens SIMATIC Step 7 Professional Software

HMI SCADA

IE0098 - Page 12 of 14

Gas Ultrasonic Meter (USM) Sizing Tool Simulator

Liquid Ultrasonic Meter Sizing Tool Simulator

Turbine Meter Selection						Valve Selection							
rocess Conditio Project Title :	rs /Tag	Fluid Lis	Fluid st <mark>Gasolin</mark>	e			Specific Gravity 0.72 Spe	/ Density ecific Gravity	•	Viscosi	ly 1.1	Centistol	e 💌
Flow Rate	Minimum	200	Operating	400	Maximum	600	Units Gallons		Ŧ	Per M	linute	·	
Temperature		20		60		100	@ "F	0.0					
Pressure				60		100	PSI		•				
leter Selection (Turbine (Meter (© Series 1 © Series 1 200 or Serie	1200 1500	ine Meter.										

Liquid Turbine Meter and Control Valve Sizing Tool Simulator

Orifice Flow Calculator Simulator

IE0098 - Page 13 of 14

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

IE0098 - Page 14 of 14

