

COURSE OVERVIEW IT0026 Certificate in Advanced Data Analysis

Course Title

Certificate in Advanced Data Analysis

Course Date/Venue

January 18-22, 2026/Crowne Meeting Room, Crowne Plaza Al Khobar, an IHG Hotel, Al Khobar, KSA

Course Reference

IT0026

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using the "Microsoft Power BI" application.

This course is designed to provide participants with a detailed and up-to-date overview of Certificate in Advanced Data Analysis. It covers the definition and scope of data analysis, role in business decision-making and research; the differences between descriptive, diagnostic, predictive prescriptive analytics and and applications industries; the data lifecycle and management, statistical foundations for data analysis, exploratory data analysis (EDA) and tools for advanced data analysis; the regression analysis, multivariate analysis, time series analysis, survival and event analysis and non-parametric methods; and the learning for data classification machine analysis, techniques, regression-based ML models and neural networks and deep learning basics.

During this interactive course, participants will learn the model deployment and validation, advanced visualization techniques and communicating data insights; the big data concepts and tools, text analytics and natural language processing (NLP) and data governance; the strategic use of data analytics, industry applications of advanced data analysis and emerging trends in data analytics; and building the analytics capability in organizations covering setting up analytics centers of excellence (CoE), recruiting and upskilling data teams, embedding analytics into workflows and management for data-driven culture.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an advanced knowledge on data analysis
- Discuss the definition and scope of data analysis, role in business decisionmaking and research, differences between descriptive, diagnostic, predictive and prescriptive analytics and applications across industries
- Implement data lifecycle and management, statistical foundations for data analysis, exploratory data analysis (EDA) and tools for advanced data analysis
- Apply regression analysis, multivariate analysis, time series analysis, survival and event analysis and non-parametric methods
- Carryout machine learning for data analysis, classification techniques, regression-based ML models and neural networks and deep learning basics
- Employ model deployment and validation, advanced data visualization techniques and communicating data insights
- Identify big data concepts and tools, text analytics and natural language processing (NLP) and data ethics and governance
- Apply strategic use of data analytics, industry applications of advanced data analysis and emerging trends in data analytics
- Build analytics capability in organizations covering setting up analytics centers of excellence (CoE), recruiting and upskilling data teams, embedding analytics into workflows and change management for data-driven culture

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**®). The **H-STK**® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of advanced data analysis for data analysts and senior analysts, data scientists and machine learning engineers, business analysts and decision-making professionals, IT and software professionals, managers and team leaders and those who are involved in handling, interpreting and making decisions based on data.

<u>Accommodation</u>

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Certificate(s)

(1) Internationally recognized Competency Certificates will be issued to participants who completed a minimum of 80% of the total tuition hours and successfully passed the exam at the end of the course. Certificates are valid for 5 years.

Recertification is FOC for a Lifetime.

Sample of Certificates

The following are samples of the certificates that will be awarded to course participants:-

(2) Official Transcript of Records will be provided to the successful delegates with the equivalent number of ANSI/IACET accredited Continuing Education Units (CEUs) earned during the course.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Mike Tay, PhD, MSc, BSc, is a Senior IT, Telecommunications, Control & Electronics Engineer with over 30 years of extensive experience. His expertise widely covers in the areas of Cloud Infrastructure, Digital Transformation, Cloud Security Mechanism, E-Communication & Collaboration Skills, Virtual Communication, Social Networking, Business Intelligence Tools,

IT Disaster Recovery & Planning, IT Risk Management Concepts, IT Risk Management Standard Approaches, IT Risk Management Planning, IT Risk Identification, IT Risk Monitoring & Control, Information Technology Architectures, Application Architecture, Portfolio Management, Application Security, Application Integration Technologies & Strategies, Solution Architecture Patterns, Web Applications & Services, Mobile & Cloud Applications, Blended Learning Programs, Web Programming, Advanced Database Management Systems, Web Design, HCI, 3D Animation, Multimedia Design, Gamification Techniques, Internal & External Auditing, OS Architectures and Network Security. Further, he is also wellversed in Mobile Protocols, 4G LTE, GSM/UMTS, CMDA2000, WIMAX Technology, HSPA+, Alarm Management System, Computer Architecture, Logic & Microprocessor Design, Embedded Systems Design plus Computer Networking with CISCO, Network Communication, Industrial Digital Communication, Designing Telecommunications Distribution System, Electrical Engineering, WiMAX Broadband Wireless System, TT Intranet & ADSL Network, TT Web & Voicemail, Off-site ATM Network, IT Maintenance, Say2000i, IP Phone, National Address & ID Automation, Electricity Distribution Network, Customs Network & Maintenance, LAN & WAN Network, UYAP Network, Network Routing Protocols, Multicast Protocols, Network Management Protocols, Mobile & Wireless Networks and Digital Signal Processing, Currently, he is the Technical Advisor of Izmir Altek.

During his career life, Dr. Tay worked with various companies such as the KOC Sistem, Meteksan Sistem, Altek BT, Yasar University, Dokuz Eylul University, METU and occupied significant positions like the Aegean Region Manager, Group Leader, Technical Services Manager, Field Engineer, Research Assistant, Instructor, Technical Advisor and the Dr. Instructor.

Dr. Tay has PhD, Master and Bachelor degrees in Electrical & Electronic Engineering from the Dokuz Eylul University and the Middle East Technical University (METU) respectively. Further, he is a Certified Instructor/Trainer, Technical Trainer (Australia), Trainer for Data-Communication System (England & Canada), a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM), a Certified CISCO (CCSP, CCDA, CCNP, CCNA, CCNP) Specialist, a Certified CISCO IP Telephony Design Specialist, CISCO Rich Media Communications Specialist, CISCO Security Solutions & Design Specialist and Information Systems Security (INFOSEC) Professional. He has delivered and presented innumerable training courses and workshops worldwide.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 18th January 2026

Day I.	Suriday, 16 January 2020
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction to Advanced Data Analysis Definition and Scope of Data Analysis • Role in Business Decision-Making
	and Research • Differences Between Descriptive, Diagnostic, Predictive, and Prescriptive Analytics • Applications Across Industries
0930 - 0945	Break
0000 0010	Data Lifecycle & Management
0045 4400	Data Collection Methods and Sources • Data Storage Systems (Databases,
0945 – 1100	Warehouses, Lakes) • Data Quality and Cleansing Techniques • Metadata
	and Documentation
	Statistical Foundations for Data Analysis
1100 1000	Probability Distributions and Hypothesis Testing • Sampling Methods and
1100 - 1200	Estimation • Confidence Intervals and Significance Levels • Correlation and
	Causation in Data
	Exploratory Data Analysis (EDA)
1200 - 1230	Techniques for Initial Data Exploration • Outlier Detection Methods •
	Visualization of Data Distributions • Feature Engineering Basics
1230 - 1245	Break
	Tools for Advanced Data Analysis
1245 1220	Python (NumPy, Pandas, SciPy, scikit-learn) • R for Advanced Statistical
1245 – 1330	Modeling • SQL for Data Extraction and Manipulation • Data Visualization
	Tools (Tableau, Power BI, matplotlib)
	Case Study – Real-World Data Challenges
1220 1420	Common Issues in Real Datasets • Identifying Missing and Inconsistent
1330 – 1420	Values • Data Preprocessing Workflows • Hands-On Problem-Solving
	Exercise
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about
	the Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One

Day 2: Monday, 19th January 2026

<i>Day 2:</i>	Monday, 19" January 2026
0730 - 0830	Regression Analysis Linear Regression and Assumptions • Logistic Regression for Classification Problems • Multicollinearity Detection and Remedies • Model Validation and Residual Analysis
0830 - 0930	Multivariate Analysis Principal Component Analysis (PCA) • Factor Analysis for Dimensionality Reduction • Cluster Analysis (K-Means, Hierarchical Clustering) • MANOVA and Discriminant Analysis
0930 - 0945	Break
0945 – 1100	Time Series Analysis Components of Time Series (Trend, Seasonality, Noise) • ARIMA and SARIMA Models • Exponential Smoothing Techniques • Forecasting Applications
1100 – 1230	Survival & Event Analysis Basics of Survival Analysis • Kaplan-Meier Estimator • Hazard Functions and Cox Proportional Hazards Model • Applications in Business and Healthcare
1230 - 1245	Break
1245 - 1330	Non-Parametric Methods Chi-Square and Rank-Sum Tests • Kruskal-Wallis Test • Bootstrapping Methods • When to Apply Non-Parametric Techniques
1330 - 1420	Case Study - Multivariate Dataset Analysis Choosing the Right Analysis Technique • Applying PCA for Dimension Reduction • Clustering Customers Based on Behaviors • Discussion of Results and Interpretation
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two
·	

Day 3: Tuesday, 20th January 2026

Day 3:	Tuesday, 20 th January 2026
0730 - 0830	Basics of Machine Learning for Data Analysis Supervised versus Unsupervised Learning • Model Training, Validation, and Testing • Overfitting and Underfitting Issues • Evaluation Metrics (Accuracy, Precision, Recall, F1-Score)
0830 - 0930	Classification Techniques Decision Trees and Random Forests • Support Vector Machines (SVM) • Naïve Bayes Classifiers • Ensemble Methods (Bagging, Boosting, Stacking)
0930 - 0945	Break
0945 – 1100	Regression-Based ML Models Polynomial Regression • Ridge and Lasso Regression • Elastic Net Method • Applications in Forecasting and Pricing
1100 - 1230	Neural Networks & Deep Learning Basics Structure of Artificial Neural Networks • Activation Functions and Backpropagation • Convolutional Neural Networks (CNNs) • Applications in Image and Text Analysis
1230 – 1245	Break

1245 – 1330	Model Deployment & Validation
	Cross-Validation Techniques • ROC Curve and AUC Scoring •
	Hyperparameter Tuning • Bias-Variance Tradeoff
1330 – 1420	Case Study - Predictive Modeling
	Building a Classification Model with Real Data • Feature Selection and
	Transformation • Comparing Multiple Models' Performance • Business
	Implications of Model Predictions
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about
	the Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4: Wednesday, 21st January 2026

Day 4.	Wednesday, 21 January 2020
0730 - 0830	Advanced Data Visualization Techniques Interactive Dashboards (Tableau, Power BI) • Geospatial Visualizations (Heatmaps, Maps) • Advanced Plots (Pair Plots, Violin Plots, Sankey
	Diagrams) • Best Practices in Storytelling with Data
0830 - 0930	Communicating Data Insights Structuring Analytical Reports • Translating Technical Results for Decision-Makers • Data Storytelling Frameworks (Context, Insight, Action) • Avoiding Misrepresentation of Data
0930 - 0945	Break
0945 – 1100	Big Data Concepts & Tools Introduction to Big Data and Its 5Vs • Hadoop and Spark for Large-Scale Analytics • Streaming Data Processing • Integration of Big Data with BI Platforms
1100 – 1230	Text Analytics & Natural Language Processing (NLP) Text Preprocessing (Tokenization, Stemming, Lemmatization) • Sentiment Analysis Methods • Topic Modeling (LDA, NMF) • Applications in Social Media and Customer Feedback
1230 - 1245	Break
1245 - 1330	Data Ethics & Governance Data Privacy and GDPR Compliance • Ethical Use of AI and Algorithms • Avoiding Bias in Data-Driven Decisions • Corporate Data Governance Frameworks
1330 – 1420	Case Study - Big Data Analytics Application Applying Spark for Processing Large Datasets • Visualizing Customer Trends • Performing Sentiment Analysis on Text Data • Presenting Insights to Management
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four
	·

Day 5:	Thursday, 22 nd January 2026
--------	---

Day 5:	Thursday, 22 ^m January 2026
0730 - 0830	Strategic Use of Data Analytics
	Role of Analytics in Strategic Planning • Data-Driven Decision-Making
0750 0050	Frameworks • Analytics for Competitive Advantage • Integration with
	Enterprise Systems
	Industry Applications of Advanced Data Analysis
	Finance (Fraud Detection, Risk Modeling) • Healthcare (Predictive
0830 - 0930	Diagnosis, Patient Analysis) • Retail (Customer Segmentation,
	Recommendation Engines) • Oil & Gas/Energy (Predictive Maintenance,
	Demand Forecasting)
0930 - 0945	Break
	Emerging Trends in Data Analytics
0945 - 1100	AI-Powered Analytics • Edge Analytics in IoT • Augmented Analytics with
	Natural Language Queries • Quantum Computing in Analytics
	Building Analytics Capability in Organizations
1100 - 1200	Setting Up Analytics Centers of Excellence (CoE) • Recruiting and
1100 - 1200	Upskilling Data Teams • Embedding Analytics into Workflows • Change
	Management for Data-Driven Culture
1200 – 1215	Break
	Capstone Project - End-to-End Analysis
1215- 1300	Select a Dataset Relevant to Participants' Field • Perform EDA, Modeling,
	and Visualization • Draw Insights and Propose Decisions
1300 – 1315	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about
	Topics that were Covered During the Course
1315 – 1415	COMPETENCY EXAM
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Hands-on Practical Sessions

Practical session will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "Microsoft Power BI".

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

