

COURSE OVERVIEW FE0470 Metallurgical Failure Analysis & Prevention

CEUS

30 PDHs)

Course Title

Metallurgical Failure Analysis & Prevention

Course Date/Venu

Session 1: April 27-May 01, 2025/Crowne Meeting Room, Crowne Plaza Al Khobar, KSA Session 2: July 20-24, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Course Reference

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes reallife case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

Metallurgical Failure Analysis is one of the most useful techniques for ensuring the safety and reliability of products and plant facilities/components. The main benefits are the prevention of failure in a similar equipment, and improvement in useful service life through design or material modifications. Failure Analysis of metallic components has been the preoccupation of the metallurgical community for years. Process plants usually have an excellent staff of "static equipment" inspectors, whose services prove invaluable during machinery component failure analysis. The strengths of the metallurgical inspectors lie in solving service failures based on the standard metallurgical failure modes and their causes.

To increase the odds of completing a conclusive Metallurgical failure analysis while at the same time saving time and money, investigations should be carried out using a systemic approach. It is important to note however, that it is often impossible to foresee results that might require the investigator to go back and repeat a test. A simple way reduces the occurrence of this is to go into a case well informed on how similar systems have failed. An excellent source of for this type of information is indeed this course as we include herein 39 case studies that will be discussed during the last 3 days of the course. This course is therefore an invaluable source to the beginner and the expert.

FE0470 - Page 1 of 8

This course discusses the various types of failure mechanisms and the process of conducting a metallurgical failure analysis. It contains a general outline of the various mechanisms that are responsible for failures, and describes the procedures and laboratory techniques used in metallurgical failure analysis. Finding the root cause of failures through such investigations can provide valuable feedback to the design and manufacturing groups. In addition to the material properties, component failures are very much affected by the service environment. Engineers should be aware of the potential failure mechanisms so that proper precautions can be taken during the design stage of a system.

The course explores a systematic approach to successful metallurgical failure analysis and troubleshooting programs, including the determination of goals, use of checklists and setting up a failure analysis team. By reference to 39 case studies, it will be shown that such a systematic program can lead to significant failure reductions in many types of equipment and structures.

Equipment failure events will be reviewed and participants are encouraged to bring to the seminar relevant assembly drawings or such components as failed bearings, gears, mechanical seals and similar machine elements for failure analysis and discussion.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply systematic techniques in metallurgical failure analysis including proven tools on how to prevent such failure
- Discuss how parts fail, why they fail in a given mode, and how to prevent failures
- Use the available failure statistics in a conscientiously applied comprehensive program of specifying, purchasing, installing, commissioning and operating equipment and structures
- Enumerate the various factors that need to be considered in material selection, design and the service environment
- Recognize the basic features and characteristics of different failure mechanisms
- Carryout the latest methodology and procedures in laboratory testing that can help determine the cause of the failures
- Gain thorough experience in metallurgical failure analysis through studying and analysing 39 case histories in different industries

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides a suitable understanding and deeper appreciation of metallurgical failure analysis and prevention for maintenance, reliability, integrity, inspection, QA/QC, materials, corrosion, project, safety, chemical and process managers, engineers, superintendents, supervisors, officers, planners and foremen. Further, the course is applicable for design, manufacturing and product development managers and engineers.

FE0470 - Page 2 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

• BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

ACCREDITED

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

FE0470 - Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Tim Siakos, MSc, BSc, is a Senior Metallurgical Engineer with over 25 years of extensive experience within the Oil & Gas, Petrochemical, Refinery and Mining industry. His wide expertise lies extensively in the areas of Metallurgical Failure Analysis & Prevention, Corrosion & Metallurgy, Damage & Material Evaluation, Stress Analysis & Fracture Mechanics, Weld Cracking, Material & Corrosion Engineering, Material Selection

& Properties, Corrosion & Prevention of Failures, Corrosion Risk Assessment, Corrosion Monitoring Prevention & Control, Advanced Integrity Management for Corrosion & Inspection, Corrosion Management, Corrosion & Control System, & Inspection, Welding Fundamentals, Corrosion Technology Welding Engineering, Fabrication & Inspection, Practical Welding Technology, Welding Inspection Technology, Welding & Fabrication, Welding & Machining, Welding Technology and Welding Defects Analysis. Further, he is also well-versed in Electric Furnace, Ladle Furnace Treatment, Open Cast Lignite Mining, Bentonite Mining, Fe-Ni Metallurgy, NEBOSH-IGC, Risk Management, CPR & AED, SAP/ERP, Business Planning & Budgeting, Contract Management, Benchmarking, Key Performance Indicator (KPI) and Project Management. He is currently the Mine Design & Planning Sector Head of Public Power Company (PPC) wherein he is deeply involved in mine planning, mine exploitation, slope design and production design.

During his career life, Mr. Siakos gained his practical and field experience through his various significant positions and dedication as the **Mine Manager**, **Mines Production Subsector Head**, **Mines & Performance Sector Head**, **Health & Safety Training Head**, **Chief Production Engineer**, **Metallurgist**, **Engineer** and **Trainer/Lecturer** for various companies and institutions such as the Technological Institute of Peraius, National Technical University of Athens, Bentonite Industry, Mycobar SA and Larko SA.

Mr. Siakos has a Master degree in Energy Management Systems and a Bachelor degree in Mining & Metallurgical Engineering from the Athens National Technical University. Further, he is a Certified Instructor/Trainer, a Certified OHSAS 18001:2007 Lead Auditor and a Certified ISO 14001:2015 Lead Auditor. He has further delivered numerous trainings, courses, seminars, workshops and conferences globally.

FE0470 - Page 4 of 8

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Principles & Practice of Failure Analysis
0830 - 0930	Introduction to Failure Analysis & Prevention • The Failure Analysis Process •
	Organization of Failure Investigation
0930 - 0945	Break
	Principles & Practice of Failure Analysis (cont'd)
0945 – 1045	Conducting a Failure Examination • Determination & Classification of Damage •
	Examination of Damage & Material Evaluation
	Tools & Techniques in Failure Analysis
1045 – 1200	Practices in Failure Analysis • Photography in Failure Analysis • Chemical Analysis
	of Metals in Failure Analysis • Characterization of Plastics in Failure Analysis
1200 – 1215	Break
	Tools & Techniques in Failure Analysis (cont'd)
1215 1315	Stress Analysis & Fracture Mechanics • X-ray Diffraction Residual Stress
1215 - 1515	Measurement in Failure Analysis • Metallographic Techniques in Failure Analysis •
	Scanning Electron Microscopy
	Metallurgical Failure: Case Studies
1315 - 1420	Case Study # 1: Cracking in Gas Turbine Blades
	<i>Case Study</i> # 2: <i>Stresses in a Pressurized Cylindrical Section</i>
	<i>Case Study</i> # 3: <i>Use of XRD to Assess the Effects of Heat Treatment on Residual Stress</i>
	in Steel Coil Springs
1420 – 1430	Recap
1430	Lunch & End of Day One

FE0470 - Page 5 of 8

Day 2

	Fracture
0730 – 0830	Fracture Appearance & Mechanisms of Deformation & Fracture • Mechanisms &
	Appearances of Ductile & Brittle Fracture in Metals • Fatigue Fracture Appearances
	Intergranular Fracture
	Metallurgical Failure: Case Studies
	Case Study # 4: Intergranular Fracture of Steam Generator Tubes
0000 0045	Case Study # 5: Forming Cracks on Stainless Steel Wire
0850 - 0945	Case Study # 6: Overload Failure of a Bronze Worn Gear
	Case Study # 7: Valve Seat Fractures
	Case Study # 8: Fracture of a Cast Steel Bracket
0945 - 1000	Break
	Fracture (cont'd)
1000 – 1115	Fracture of Plastics • Fracture Modes & Appearances in Ceramics • Overload
	Failures
	Metallurgical Failure: Case Studies
	Case Study # 9: Failure of a Jack Cylinder
1115 – 1230	Case Study # 10: Stress-Relief Cracking of a Welded Alloy Steel Tube
	Case Study # 11: Failure of a Steel Superheater Tube
	Case Study # 12: Hydrogen Embrittlement Failure of Cap Screws
1230 - 1245	Break
	Fracture (cont'd)
1245 – 1420	Fatigue Failures • Creep & Stress Rupture Failures • Thermomechanical Fatigue:
	Mechanisms & Practical Life Analysis
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3

	Metallurgical Failure: Case Studies
	Case Study # 13: Weld Cracking of a Stainless Steel Heat Exchanger
	Case Study # 14: Failure of an Overhead Crane Drive Shaft Due to Rotating-Bending
0730 – 0930	Fatigue
	Case Study # 15: Torsional-Fatigue Fracture of a Large 4340 Steel Shaft that was
	Subject to Cyclic Loading & Frequent Overloads
	Case Study # 16: Prediction of Residual Life in a Turbine Casing
0930 - 0945	Break
	Corrosion-Related Failures
0945 – 1030	Analysis & Prevention of Corrosion-Related Failures • Forms of Corrosion • Effect of
	Environment on the Performance of Plastics
	Metallurgical Failure: Case Studies
	Case Study # 17: Analysis of Pitting & MIC of Stainless Steel Piping
	Case Study # 18: Analysis of a Corrosion Failure of an Aboveground Storage Tank
1030 – 1145	<i>Case Study</i> # 19: <i>Preventive Maintenance for Buried Pipelines</i>
	Case Study # 20: Structural Epoxy Rehabilitation of Steel & Reinforced Concrete
	Structures
	Case Study # 21: Uniform Corrosion of Carbon Steel Boiler Feedwater Tubes
	Corrosion-Related Failures (cont'd)
1145 – 1230	Corrosion Failures of Industrial Refractories & Technical Ceramics • Hydrogen Damage
	& Embrittlement
1230 - 1245	Break

FE0470 - Page 6 of 8

	Metallurgical Failure: Case Studies
1245 – 1420	Case Study # 22: Uniform Corrosion of a Copper Pipe Coupling
	Case Study # 23: Pitting Corrosion of Stainless Steel by Potable Water in an Organic
	Chemical Plant Condenser
	Case Study # 24: Corrosion by "Green Death" in Reboiler Bypass Duct Damper in
	Power-Generation Plant
	Case Study # 25: Crevice Corrosion of a Carbon Steel Brine Tank
	Case Study # 26: Weld Craters in Stainless Steel Heat Exchanger Tubes
1420 – 1430	Recap
1430	Lunch & End of Day Three

Day 4

0730 - 0830	Corrosion-Related Failures (cont'd)
	Stress-Corrosion Cracking • Liquid Metal & Solid Metal Induced Embrittlement
	Metallurgical Failure: Case Studies
	Case Study # 27: Leaking Welds in a Ferritic Stainless Steel Wastewater Vaporizer
	Case Study # 28: Hydrogen Embrittlement of a Type 431 Stainless Steel Mushroom-
0830 - 0930	Head Closure
0000 - 0000	Case Study # 29: Leaking Carbon Steel Weldments in a Sulfur Recovery Unit
	Case Study # 30: Metallurgical Analysis of Steam Turbine Rotor Disc
	Case Study # 31: Eddy-Current Inspection of Pitting & SCC of Type 316 Stainless
	Steel Evaporator Tubes in a Chemical Processing Operation
0930 - 0945	Break
1000 - 1115	Corrosion-Related Failures (cont'd)
1000 1110	High-Temperature Corrosion-Related Failures • Biological Corrosion Failures
	Metallurgical Failure: Case Studies
	<i>Case Study</i> # 32: <i>SCC of an Inconel 600 Safe-End on a Reactor Nozzle</i>
	Case Study # 33: SCC of Aluminum Alloy Fittings in a Marine Atmosphere
1115 – 1230	Case Study # 34: SCC of Copper Alloy C27000 Ferrules in Storage & in Service in
	Chemical Plants
	Case Study # 35: Reaction Control System Oxidizer Pressure Vessels
	Case Study # 36: High-Temperature Degradation of a Gas Turbine Transition Duct
1230 - 1245	Break
1245 – 1420	Wear Failures
	<i>Fundamentals of Wear Failures</i> • <i>Abrasive Wear Failures</i> • <i>Fretting Wear Failures</i> •
	Rolling Contact Fatigue • Rolling-Contact Fatigue of Ceramics • Impact Wear
	Failures • Spalling from Impact Events
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5

0730 - 0900	Metallurgical Failure: Case Studies
	Case Study # 37: Jaw-Type Rock Crusher Wear
	Case Study # 38: Electronic Circuit Board Drill Wear
	Case Study # 39: Grinding Plate Wear Failure Analysis
	Case Study # 40: Impact Wear of Disc Cutters
0900 - 0915	Break
0915 - 1000	Wear Failures (cont'd)
	Corrosive Wear Failures • Erosive Wear Failures • Cavitation Erosion • Liquid-
	Impact Erosion • Wear Failures of Plastics • Wear Failures of Reinforced Polymers

FE0470 - Page 7 of 8

1000 – 1200	Metallurgical Failure: Case Studies
	Case Study # 41: Fretting Failure of Raceways on 52100 Steel Rings of an Automotive
	Front-Wheel Bearing
	<i>Case Study</i> # 42: <i>Fretting of Freon-Compressor Shaft because of a Loose Bearing</i>
	Case Study # 43: Wear Failure of an Antifriction Bearing
1200 – 1215	Break
1215 1200	Distortion & Deformation Failures
1215 - 1500	Analysis of Distortion & Deformation
	Metallurgical Failure: Case Studies
1300 - 1345	Case Study # 44: Distortion Failure of an Automotive Valve Spring
1300 - 1343	Case Study # 45: Seizing of a Spool-Type Hydraulic Valve
	<i>Case Study</i> # 46: <i>Deformation of a Gas-Nitrided Drive-Gear Assembly</i>
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the Course
	Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises: -

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

FE0470 - Page 8 of 8

