

<u>COURSE OVERVIEW PE0322</u> <u>Refrigeration System Commissioning, Operation and</u> <u>troubleshooting</u>

Course Title

Refrigeration System Commissioning, Operation and troubleshooting

Course Reference

PE0322

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Date/Venue

Session(s)	Date	Venue
1	May 04-08, 2025	
2	July 06-10, 2025	Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE
3	November 02-06, 2025	,, -

Course Description

This practical and highly-interactive course includes practical sessions and exercises. Theory learnt will be applied using our stateof-the-art simulators.

Refrigeration systems are common in the natural gas processing industry and processes related to the petroleum refining, petrochemical, and chemical industries. Several applications for refrigeration include NGL recovery, LPG recovery, hydrocarbon dew point control, reflux condensation for light hydrocarbon fractionators and LNG plants.

Selection of a refrigerant is generally based upon temperature requirements, availability, economics and previous experience. For instance, in a natural gas processing plant, ethane and propane may be at hand; whereas in an olefins plant, ethylene and propylene are readily available. Propane or propylene may not be suitable in an ammonia plant because of the risk of contamination, while ammonia may very well serve the purpose. Halocarbons have been used extensively because of their non-flammable characteristics.

PE0322 - Page 1 of 10

This course is designed to provide participants with a detailed and up-to-date overview of refrigeration system commissioning, operation and troubleshooting. It covers the discuss mechanical refrigeration, refrigeration stages and condensing temperature, carryout horsepower and condenser duty estimation as well as design and operating considerations, apply considerations for vacuum refrigeration systems and identify the types of compressors, recognize mixed refrigerants, chillers an system controls as well as recognize absorption refrigeration and carryout principles of refrigeration processes.

During this interactive course, participants will learn the illustrating of cryogenic processes and constant – temperature refrigeration processes, identifying the need for refrigerant including optimum mixture composition, natural gas liquefaction process and cooling and liquefaction of air and its constituents, employing proper troubleshooting and problem solving processes, implementing the rules of thumb for troubleshooting and problem solving skills, applying gathering skills and interpersonal skills.

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Apply systematic techniques on refrigeration commissioning, operation and troubleshooting
- Discuss mechanical refrigeration, refrigeration stages and condensing temperature
- Carryout horsepower and condenser duty estimation as well as design and operating considerations
- Apply various considerations for vacuum refrigeration systems and identify the types of compressors
- Recognize mixed refrigerants, chillers and system controls as well as recognize absorption refrigeration and carryout principles of refrigeration processes
- Illustrate of cryogenic processes and constant temperature refrigeration processes
- Identify the need for refrigerant including optimum mixture composition, natural gas liquefaction process and cooling and liquefaction of air and its constituents
- Employ proper troubleshooting and initial problem solving processes
- Implement the rules of thumb for troubleshooting and problem solving skills
- Apply gathering skills and interpersonal skills

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

PE0322 - Page 2 of 10

Who Should Attend

This course provides a complete and up-to-date overview of refrigeration system commissioning, operation and troubleshooting for process engineers, production engineers, operations engineers and other technical staff.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

- BAC
 - British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training
(IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

PE0322 - Page 3 of 10

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Karl Thanasis, PEng, MSc, MBA, BSc, is a Senior Engineer with over 30 years of practical experience within the Oil, Gas, Refinery and Petrochemical industries. His wide expertise includes **Process Plant** Optimization Technology & Continuous Improvement, Process Engineering Calculations, Process Plant Start Up & Commissioning, Applied Process Engineering Elements, Coke Cooler. Process Plant Start-up Commissioning, Process Plant Troubleshooting, Operations

Abnormalities & Plant Upset, Process Equipment Applications & Troubleshooting, Process Plant Performance & Efficiency, Gas Sweetening & Sulphur Recovery, Distillation-Column Control & Troubleshooting, Oil Movement & Troubleshooting, Process Plant Operations & Control, Process Equipment Operation, Fired Heaters & Air Coolers Maintenance, Heat Exchangers, Pumps & Compressors, Crude Desalter, Pressure Vessels & Valves, Steam Trapping & Control, Pumps & Valve Maintenance & Troubleshooting, Turbomachinery, Mechanical Alignment, Rotating Equipments, Diesel Generators, Lubrication Technology, Bearing, Predictive & Preventive Maintenance, Root Cause Analysis, Boilers, Oil Field Operation, Production Operation, Plant Operation & Commissioning, Crude Oil De Salting Process, Gas Conditioning, NGL Recovery & NGL Fractionation, Flare System, Storage Tanks, Oil Recovery System and Chemical Injection.

Mr. Thanasis has acquired his thorough and practical experience as the Project Manager, Plant Manager, Area Manager - Equipment Construction, Construction Superintendent, Project Engineer and Design Engineer. His duties covered Plant Preliminary Design, Plant Operation, Write-up of Capital Proposal, Investment Approval, Bid Evaluation, Technical Contract Write-up, Construction and Subcontractor Follow up, Lab Analysis, Sludge Drying and Management of Sludge Odor and Removal. He has worked in various companies worldwide in the USA, Germany, England and Greece.

Mr. Thanasis is a Registered Professional Engineer in the USA and Greece and has a Master and Bachelor degrees in Mechanical Engineering with Honours from the Purdue University and SIU in USA respectively as well as an MBA from the University of Phoenix in USA. Further, he is a Certified Internal Verifier/Trainer/Assessor by the Institute of Leadership & Management (ILM) and a Certified Instructor/Trainer.

Course Fee

US\$ 5.500 per Delegate + VAT. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

PE0322 - Page 4 of 10

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Mechanical Refrigeration
0830 - 1030	Refrigeration Cycle • Expansion Step • Evaporation Step • Compression Step
	• Condensation Step • System Pressure Drop
1030 - 1045	Break
	Refrigeration Stages
1045 - 1115	One-Stage System • Two-Stage System • Three-Stage System • System
	Configuration
1115 – 1215	Condensing Temperature
1115 - 1215	<i>Refrigerant Subcooling</i> • <i>Refrigerant Cascading</i> • <i>Refrigerant Properties</i>
1215 - 1315	Horsepower & Condenser Duty Estimation
1215 - 1515	One-Stage System • Two-Stage System • Three-Stage System
1315 – 1330	Break
1330 - 1420	Design & Operating Considerations
	Oil Removal • Liquid Surge & Storage • Vacuum Systems
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2

	Considerations for Vacuum Refrigeration Systems
0730 – 0930	Materials of Construction • Refrigerant Purity • Seal Gas & Lube Oil System
	Types of Compressors
0930 - 1030	Centrifugal Compressors • Reciprocating Compressors • Screw Compressors
	(Operation & Upkeep) • Rotary Compressors
1030 - 1045	Break
1045 - 1145	Mixed Refrigerants
1145 - 1245	Chillers
	Kettle Type Chiller • Plate-Fin Chillers

PE0322 - Page 5 of 10 PE0322-05-25|Rev.07|20 February 2025

1245 - 1300	Break
1300 - 1420	<i>System Controls</i> <i>Level Controls</i> • <i>Pressure Controls</i> • <i>Evaporator Temperature</i> • <i>Low Ambient</i> <i>Controls</i> • <i>Control of Refrigerant Losses</i>
1420 - 1430	Recap
1430	Lunch & End of Day Two

Dav	3
Day	J

Absorption Refrigeration Processes 0730 - 0930 Lithium Bromide-Water Systems • Aqueous Ammonia System • Reliability • Design Flexibility • Applications Principles of Refrigeration Processes Applications • Sign Convention • Ideal Refrigeration & Liquefaction • Processes victionut any Work Interaction • Performance of an Ideal Gas Cooler Operating with a Non-Ideal Expander • Precooled Ideal Liquefaction Process Unde-Hampson Refrigerators & Liquefiers • Joule-Thomson Coefficient • Exergy Efficiency of a Linde-Hampson Liquefier • Temperature Profiles in Heat Exchangers Operating with Single Phase Fluids • Heat Exchangers Effectiveness • Exergy Efficiency of the Solvay & Linde-Hampson Liquefaction Processes • The Kapitza Liquefaction Process & its Variants • Pinch Points • Types of Refrigerant Plant 1100 - 1115 Break Simulation of Cryogenic Processes Simulation of Cryogenic Processes Simulation of Cryogenic Processes Sequential Modular Simulators • Equation-Oriented Simulators • Simulation of Cryogenic Processes Gas Refrigerant Supply & Liquid Refrigerant Supply (GRS/LRS) Process • Linde-Hampson Refrigerator Operating at 90 K in GRS Mode • Mode • Effect of the Addition of Neon or Helium • Effect Precooling • Mixed Refriger	Day 5	
Design Flexibility • Applications Principles of Refrigeration Processes Applications • Sign Convention • Ideal Refrigeration & Liquefaction • Processes • Exergy • Exergy Loss & Exergy Efficiency • Exergy Efficiency of Processes • Under the	0730 - 0930	
Principles of Refrigeration Processes Applications Sign Convention Ideal Refrigeration & Liquefaction 0930 - 1100 Processes Exergy Exergy Lical Exergy Exe		
ApplicationsSignConventionIdealRefrigeration& Liquefaction0930 - 1100ProcessesExergyExergyListergyEfficiencyØ0930 - 1100Einer of the text of text		
1100 - 1115Break1115 - 1215Simulation of Cryogenic Processes Sequential Modular Simulators • Equation-Oriented Simulators • Simulation of Heat Exchangers with Pinch Points • Optimization of a Kapitza Nitrogen Liquefier1115 - 1215Constant-Temperature Refrigeration Processes Gas Refrigerant Supply & Liquid Refrigerant Supply (GRS/LRS) Process • Linde-Hampson Refrigerator Operating with Refrigerant Mixtures • Mixed Refrigerant Linde-Hampson Refrigerator Operating at 90 K in GRS Mode • Mixed Refrigerant Linde-Hampson Refrigerator Operating at 100 K in LRS Mode • Effect of the Addition of Neon or Helium • Effect Precooling • Mixed Refrigerant Process Refrigerators with Multiple Phase Separator • Mixed Refrigerant Process Refrigeration Systems • Exergy Efficiency of Ideal Linde-Hampson Refrigeration Operating with Refrigerant Mixtures • Cooling of Gases using mixed Refrigerant Process • Linde Gas Cooler Operating with Mixtures • Liquefaction of Natural Gas	0930 – 1100	Applications • Sign Convention • Ideal Refrigeration & Liquefaction • Processes • Exergy • Exergy Loss & Exergy Efficiency • Exergy Efficiency of Processes without any Work Interaction • Performance of an Ideal Gas Cooler Operating with a Non-Ideal Expander • Precooled Ideal Liquefaction Process • Linde-Hampson Refrigerators & Liquefiers • Joule-Thomson Coefficient • Exergy Efficiency of a Linde-Hampson Liquefier • Temperature Profiles in Heat Exchangers Operating with Single Phase Fluids • Heat Exchanger Effectiveness • Exergy Efficiency of the Solvay & Linde-Hampson Liquefaction Processes • The Kapitza Liquefaction Process & its Variants • Pinch Points • Types of Refrigerant Mixtures • Function & Maintenance of Purge Unit in
Simulation of Cryogenic Processes1115 - 1215Simulation of Cryogenic ProcessesSequential Modular Simulators • Equation-Oriented Simulators • Simulation of Heat Exchangers with Pinch Points • Optimization of a Kapitza Nitrogen Liquefier1115 - 1215Constant-Temperature Refrigeration Processes Gas Refrigerant Supply & Liquid Refrigerant Supply (GRS/LRS) Process • Linde-Hampson Refrigerators Operating with Refrigerant Mixtures • Mixed Refrigerant Linde-Hampson Refrigerator Operating at 90 K in GRS Mode • Mixed Refrigerant Linde-Hampson Refrigerator Operating at 100 K in LRS Mode • Effect of the Addition of Neon or Helium • Effect Precooling • Mixed Refrigerant Process Refrigerators with Multiple Phase Separator • Mixed Refrigerant Process Refrigeration Systems • Exergy Efficiency of Ideal Linde-Hampson Refrigeration Operating with Refrigerant Mixtures • Liquefaction of Natural Gas1320 - 1430Recap	1100 - 1115	
Constant-Temperature Refrigeration ProcessesGas Refrigerant Supply & Liquid Refrigerant Supply (GRS/LRS) Process • Linde-Hampson Refrigerators Operating with Refrigerant Mixtures • Mixed Refrigerant Linde-Hampson Refrigerator Operating at 90 K in GRS Mode • Mixed Refrigerant Linde-Hampson Refrigerator Operating at 100 K in LRS Mode • Effect of the Addition of Neon or Helium • Effect Precooling • Mixed Refrigerant Process Refrigerator with a Phase Separator • Mixed Refrigerant Process Refrigerators with Multiple Phase Separators1315 - 1330Break1330 - 1420Refrigerant Operating with Refrigerant Mixtures • Cooling of Gases using mixed Refrigerant Process • Linde Gas Cooler Operating with Mixtures • Liquefaction of Natural Gas1420 - 1430Recap		Simulation of Cryogenic ProcessesSequential Modular SimulatorsEquation-Oriented SimulatorsSimultaneous Modular SimulatorsSimulation of Heat Exchangers with
Need for Refrigerant MixturesRefrigeration Systems • Exergy Efficiency of Ideal Linde-Hampson1330 - 1420Refrigeration Operating with Refrigerant Mixtures •Cooling of Gases using mixed Refrigerant Process • Linde Gas Cooler Operating with Mixtures • Liquefaction of Natural Gas1420 - 1430Recap		Constant-Temperature Refrigeration Processes Gas Refrigerant Supply & Liquid Refrigerant Supply (GRS/LRS) Process • Linde-Hampson Refrigerators Operating with Refrigerant Mixtures • Mixed Refrigerant Linde-Hampson Refrigerator Operating at 90 K in GRS Mode • Mixed Refrigerant Linde-Hampson Refrigerator Operating at 100 K in LRS Mode • Effect of the Addition of Neon or Helium • Effect Precooling • Mixed Refrigerant Process Refrigerator with a Phase Separator • Mixed Refrigerant Process Refrigerators with Multiple Phase Separators
1330 - 1420Refrigeration Systems • Exergy Efficiency of Ideal Linde-Hampson Refrigeration Operating with Refrigerant Mixtures •Cooling of Gases using mixed Refrigerant Process • Linde Gas Cooler Operating with Mixtures • Liquefaction of Natural Gas1420 - 1430Recap	1315 – 1330	
,		Refrigeration Systems • Exergy Efficiency of Ideal Linde-Hampson Refrigeration Operating with Refrigerant Mixtures •Cooling of Gases using mixed Refrigerant Process • Linde Gas Cooler Operating with Mixtures •
1430 Lunch & End of Day Three	1420 - 1430	Recap
	1430	Lunch & End of Day Three

PE0322 - Page 6 of 10

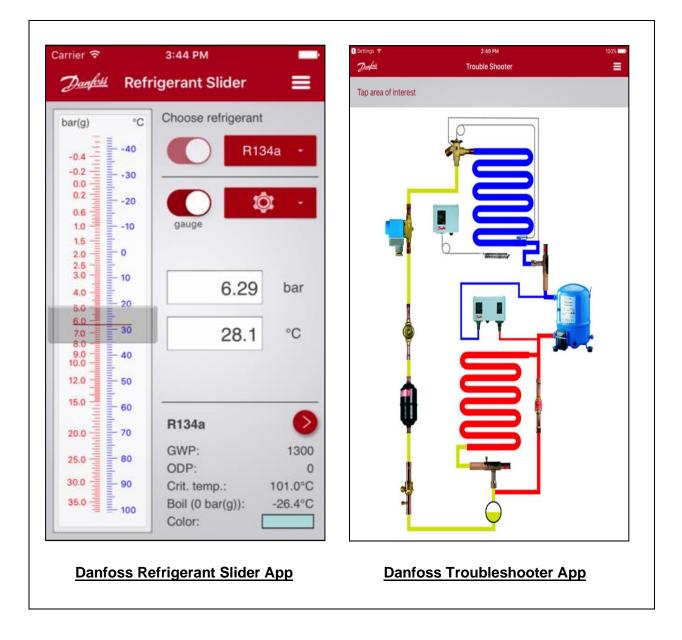
Day 4	
	Optimum Mixture Composition
	Choice of Mixture Constituents • Optimization of Mixture Composition for
	<i>Refrigeration Processes</i> • <i>Example: Linde-Hampson Refrigerator Operating in</i>
0730 – 0830	GRS Mode at 80 K • Comparison of Performance of a Linde-Hampson
	Refrigerator Operating in GRS Mode at 92 K with Mixtures Obtained Using
	the Method of Dobak et al. & the Present Method • Optimization of Mixture
	Composition & Operating Pressures of Liquefaction Processes
	Natural Gas Liquefaction Processes
	Classification of Natural Gas Liquefaction Processes • Classical Cascade
	Processes • Assumptions • Single-Stage Mixed Refrigerant LNG Process
0020 1000	<i>without Phase Separators</i> • <i>Precooled LNG Process without Phase Separators</i> •
0830 – 1000	LNG Processes with a Phase Separator • Precooled LNG Process with a Phase
	Separator • Propane Precooled Phase Separator (C3-MR) Process • Mixed
	Refrigerant Precooled Phase Separator (DMR) Processes • Cascade
	Liquefaction Process Operating with Mixtures • LNG Processes with Turbines
1000 - 1015	Break
	Cooling & Liquefaction of Air & its Constituents
	Single-Stage Processes for the Sensible Cooling of a Pure Fluid such as
	Nitrogen • Single-Stage Process for the Liquefaction of Pure Fluids such as
1015 - 1115	Nitrogen • Mixed Refrigerant Precooled Linde-Hampson Liquefaction Process
	• Mixed Refrigerant Precooled Kapitza Liquefaction Process • Liquefaction of
	Nitrogen using the Kleemenko Process • Other Liquefaction Processes &
	Refrigerants
	What is Troubleshooting?
1115 – 1215	<i>Characteristics of a Trouble-Shooting Problem</i> • <i>Characteristics of the Process</i>
1115 - 1215	Used to Solve Trouble-Shooting Problems • Routine Maintenance &
	Troubleshooting • Hands On Practice • Safety
1215 – 1230	Break
1230 - 1330	Self-Assessment & Case Studies
	The Mental Problem-Solving Process
1330 - 1420	Problem Solving • Troubleshooting • Mechanical Integrity Testing & Pre-
	Commissioning • Performance Trials & Design Specifications • Efficient
	<i>Operation of the System</i> • <i>Overall Summary of Major Skills & a Worksheet</i> •
	Example Use of the Trouble-Shooter's Worksheet
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5

Duyo	
0730 - 0830	Rules of Thumb for TroubleshootingOverallTransportation ProblemsEnergy ExchangeHomogenousSeparationHeterogenous SeparationsReactor ProblemsMixingProblemsSize-Decrease ProblemsSize EnlargementVessels, Bins,Hoppers & Storage TanksElectrical Panel & AutomationInstrument &Controls"Systems" ThinkingHealth, Fire & Stability
0830 - 0930	Case Study Observation
0930 - 0945	Break
0945 – 1045	Problem Solving Skills Developing Awareness of the Problem-Solving Process • Strategies • Exploring the "Context": What is the Real Problem? • Creativity • Self- Assessment

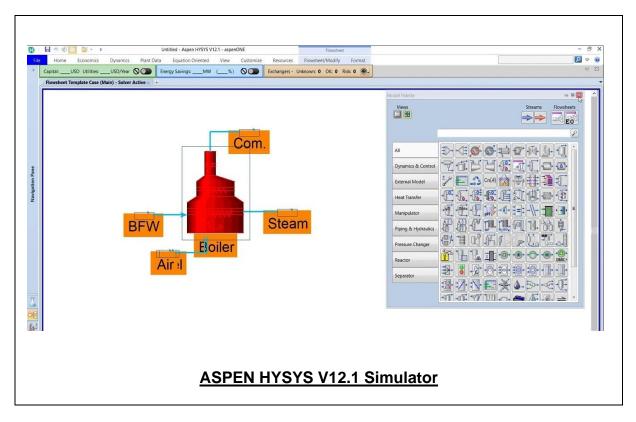
PE0322 - Page 7 of 10 PE0322-05-25|Rev.07|20 February 2025

1045 - 1145	Data Gathering SkillsHow to Select Valid Diagnostic ActionsConsistency: Definitions, Cause-Effect & FundamentalsClassificationRecognizing PatternsReasoning
1145 – 1200	Break
1200 – 1300	<i>Interpersonal Skills</i> <i>Interpersonal Skills</i> • <i>Factors that Affect Personal Performance</i> • <i>The Environment</i>
1300 - 1345	<i>Case Studies - Working in Groups</i> <i>Case Study chosen from a list by the class</i>
1345 - 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course


PE0322 - Page 8 of 10

Simulator (Hands-on Practical Sessions)

Practical session will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the simulator "Danfoss Refrigerant Slider App", "Danfoss Trouble Shooter App" and "ASPEN HYSYS" simulator.



PE0322 - Page 9 of 10

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

PE0322 - Page 10 of 10

