

COURSE OVERVIEW LE1013 New XRF Analyzer Machine

(30 PDHs)

AWARD

<u>Course Title</u> New XRF Analyzer Machine

Course Reference

LE1013

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Date/Venue

Course Bater Verrae		
Session(s)	Course Date	Venue
1	June 22-26, 2025	
2	September 07-11, 2025	Meeting Plus 9, City Centre Rotana, Doha, Qatar
3	November 23-27, 2025	

Course Description

<u>Course Objectives</u>

This practical and highly-interactive course includes real-life case studies where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and advanced overview on new XRF analyzer machine. It covers the XRF technology, the basic principles of XRF operation and components of the XRF analyzer; the types of XRF instruments, safety principles in XRF operation and the importance of proper sample preparation; the sample preparation for solid samples, liquid and slurry samples, powders and alloys and the sample labeling and traceability; and the instrument calibration fundamentals, setting up calibrations in the new system and running measurements.

During this interactive course, participants will learn the quality control (QC) and validation. measurement interferences and corrections and the calibration and qc testing; interpreting XRF spectra, reporting and data management, and troubleshooting analytical problems; the maintenance of the new XRF analyzer, the error prevention and best practices and advanced measurement modes and custom methods; and the regulatory and quality compliance, health, safety, and radiation protection and integration with other lab techniques.

LE1013 - Page 1 of 8

Upon the successful completion of this course, each participant will be able to: -

- Apply and gain an in-depth knowledge on new XRF analyzer machine
- Discuss XRF technology, the basic principles of XRF operation and components of the XRF analyzer
- Identify the types of XRF instruments, safety principles in XRF operation and the importance of proper sample preparation
- Employ sample preparation for solid samples, liquid and slurry samples, powders and alloys and carryout sample labeling and traceability
- Explain instrument calibration fundamentals, set up calibrations in the new system and run measurements
- Discuss quality control (QC) and validation, measurement interferences and corrections and the calibration and qc testing
- Interpret XRF spectra and carryout reporting and data management, and troubleshooting analytical problems
- Perform maintenance of the new XRF analyzer as well as identify error prevention and best practices and advanced measurement modes and custom methods
- Carryout regulatory and quality compliance, health, safety, and radiation protection and integration with other lab techniques

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of new XRF analyzer machine for laboratory technicians and analysts, quality control/quality assurance personnel, process engineers, maintenance and instrumentation technicians, lab supervisors/managers and those who will operate, manage, or utilize data from the new XRF analyzer machine.

Course Fee

US\$ 6,000 per Delegate. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

LE1013 - Page 2 of 8

Internationally recognized certificates will be issued to all participants of the course completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

LE1013 - Page 3 of 8

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Dirk Horst is a Senior Engineer with over 30 years of extensive experience in On and Off-Line Gas Chromatography, Natural Gas Determination of Composition and Associated Uncertainty by Gas Chromatography (ISO 6974), QMI (Quality Measuring Instruments), Process Analyzers, Crude Metering System, Analytical Instrumentation, Process Control & Instrumentation, Process Troubleshooting, Measuring

Instruments, Calibrating Instruments, LNG Custody Transfer Analysis, ISO Standards, Quality Assurance Monitoring System and In-Line Gasoline Blending System. He is Certified Instrument Trainer, Competence Assessor and Internal Verifier.

Mr. Horst has performed significant contributions in various industries for handling challenging positions such as an Engineering Trainer & Consultant, Process Analyzer Engineer, Instrument Engineer, Maintenance Engineer, Design Engineer, Start-Up & Commissioning Engineer, Senior Advisor Quality Measuring Instruments, Senior Analytical Chemist and Team Leader. He has imparted his practical experience and in-depth knowledge in different international companies including Shell Refinery, Shell Global Solutions, SIOP-Shell, Yokogawa LNG, QMI, Harburg Refinery, Nigeria LNG, Sakhalin LNG, SRTCA, Reliance Petroleum Refinery and many more.

Mr. Horst has a **Bachelor** degree in **Instrumentation & Electrical Engineering** from the **Royal Institute of the Netherlands**. Further, he is "Qualified Internal Verifier" and a "Certified Competence Assessor" and has certifications in "Coaching" from the City & Guilds as well as "Flow Metering" and "Gas Chromatography Troubleshooting" from the Technical University Delft, The Netherlands.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

LE1013 - Page 4 of 8

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 – 0930	<i>Introduction to XRF Technology</i> What Is X-Ray Fluorescence (XRF)? • Differences Between XRF and Other Analytical Techniques (e.g., AAS, ICP) • Applications in Mining, Metallurgy, Cement, Polymers, and Forensics • Benefits of the New Generation XRF Analyzer
0930 - 0945	Break
0945 - 1040	Basic Principles of XRF Operation Physics of X-Ray Emission and Fluorescence • Primary and Secondary X- Rays • Characteristic versus Scattered X-Rays • Interaction of X-Rays with Different Elements
1040 - 1135	<i>Components of the XRF Analyzer</i> X-Ray Tube and Detector Types (Si Drift Detector, Proportional Counter) • Sample Chamber and Autosampler (if Applicable) • Electronics and Cooling Systems • User Interface (Touchscreen, PC, or Remote Control)
1135 - 1230	<i>Types of XRF Instruments</i> Benchtop versus Handheld XRF • Energy Dispersive XRF (EDXRF) versus Wavelength Dispersive XRF (WDXRF) • Qualitative vs. Quantitative Modes • Portability and Field versus Lab Use
1230 - 1245	Break
1245 - 1335	Safety Principles in XRF Operation X-Ray Generation and Shielding Requirements • Radiation Exposure Risks and Safe Practices • Local Legal and Regulatory Standards • Interlocks, Dosimeters and Emergency Procedures
1335 - 1420	Hands-On Introduction to the New XRF Unit System Start-Up and User Login • Navigating Software Menus • Overview of Hardware Layout • Basic Functionality Test and Readiness Check
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

0730 - 0830	<i>Importance of Proper Sample Preparation</i> <i>How Preparation Affects Accuracy and Repeatability</i> • <i>Matrix Effects and</i> <i>Homogeneity</i> • <i>Surface Condition Considerations</i> • <i>Sample Size and</i> <i>Geometry</i>
0830 – 0900	Sample Preparation for Solid Samples Grinding and Pelletizing Methods • Use of Binders and Additives • Hydraulic versus Manual Pressing • Troubleshooting Poor Pellet Formation
0900 - 0915	Break
0915 – 1100	Sample Preparation for Liquid & Slurry Samples

LE1013 - Page 5 of 8 LE1013-05-25|Rev.00|30 April 2025

	Filtration and Drying Techniques • Cell Selection and Sealing Methods • Liquid Sample Carriers and Containment • Preventing Contamination and
	Leakage
	Sample Preparation for Powders & Alloys
1100 – 1230	Homogenization Techniques for Fine Powders • Fusion Techniques Using $Flux$ (Li ₂ B ₄ O ₇ , LiBO ₂) • Preparing Pressed versus Fused Samples • Dealing with Conductive and Magnetic Materials
1230 - 1245	Break
	Samnle Laheling & Traceahilitu
1245 - 1335	Best Practices for Barcode/ID Labeling • Preventing Sample Mix-Ups • Chain of Custody and Documentation • Sample Storage and Recordkeeping
1335 - 1420	Practical Session - Sample Preparation & Loading Real-Time Demonstration of Sample Preparation • Loading Samples into the Machine • Positioning and Cleaning for Optimal Results • Safety During Manual Handling
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two
Day 3	
0730 - 0830	What Is Calibration Fundamentals What Is Calibration in XRF? • Importance of Matrix-Matched Standards • Primary versus Secondary Calibration Standards • Drift Correction Principles
0830 – 0900	<i>Setting Up Calibrations in the New System</i> <i>Step-by-Step Calibration Procedures</i> • <i>Selecting and Inputting Standards</i> • <i>Curve Fitting and Regression Options</i> • <i>Managing Calibration Databases</i>
0900 - 0915	Break
0915 - 1100	Running Measurements Selecting Methods and Analytical Programs • Setting Dwell Time and Number of Repeats • Background Subtraction and Peak Deconvolution • Saving, Exporting, and Printing Results
1100 - 1230	<i>Quality Control (QC) & Validation</i> <i>Running Certified Reference Materials (CRMs) • Setting Up Control Charts</i> • <i>Repeatability, Reproducibility, and Accuracy Testing • Statistical Tools for</i> <i>Performance Monitoring</i>
1230 – 1245	Break
1245 - 1335	<i>Measurement Interferences & Corrections</i> <i>Spectral Overlaps and Peak Shifts</i> • <i>Matrix Corrections (Alpha Factors, Compton Normalization)</i> • <i>Line Selection for Multielement Analysis</i> • <i>Correcting for Air, Filter, or Surface Effects</i>
1335 - 1420	Practical Session – Calibration & QC Testing Run Calibration and Verification Procedures • Analyze Multiple Samples • Record and Interpret Results • Documenting Errors and Corrective Actions
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

LE1013 - Page 6 of 8

0730 - 0830	<i>Interpreting XRF Spectra</i> <i>Understanding Energy versus Count Plots</i> • <i>Peak Identification by Element</i> •
	Background Noise and Artifacts • Confidence Level in Results
	Reporting & Data Management
0830 0030	Data Storage Formats (PDF, CSV, LIMS) • Generating Reports for Quality,
0830 - 0930	Compliance, and Audits • Exporting Data to Lab Systems • Documenting
	Metadata and Result Comments
0930 - 0945	Break
	Troubleshooting Analytical Problems
0045 1100	Inconsistent Results and Drift • High Background or Low Counts •
0945 - 1100	Equipment Messages and Diagnostic Codes • Invalid Samples or Out-of-
	Range Data
	Maintenance of the New XRF Analyzer
1100 1015	Daily, Weekly, and Monthly Care Tasks • Cleaning and Replacing Sample
1100 - 1215	Windows • Checking Detector and X-Ray Tube Health • Running Internal
	Diagnostics
1215 - 1230	Break
	Error Prevention & Best Practices
1045 1005	Avoiding Cross-Contamination • Avoiding Damage to Sample Holders and
1245 - 1335	Detectors • Environmental Control (Humidity, Dust, Temperature) •
	Establishing SOPs and Checklist Use
	Practical Session – Data Review & Troubleshooting
1335 - 1420	Review of Test Batch Data • Identifying and Resolving Real Sample
	Anomalies • Running Preventive Diagnostics • Operator Q&A Session
	Recap
1420 1420	Using this Course Overview, the Instructor(s) will Brief Participants about
1420 - 1430	the Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

	Advanced Measurement Modes & Custom Methods
0730 0830	Fundamental Parameters versus Empirical Calibration • Thin Film, Coating
0750 - 0850	<i>Thickness Analysis</i> • <i>Multi-Layer Analysis and 3D Mapping (if Supported)</i> •
	ROI (Region of Interest) Mapping Tools
	Regulatory & Quality Compliance
0020 0020	Role of XRF in ISO, ASTM, and EPA Methods • Compliance with REACH,
0830 - 0930	RoHS, and WEEE Directives • Documenting for Audits and Traceability •
	Role in Internal QA/QC Systems
0930 - 0945	Break
	Health, Safety & Radiation Protection
004E 104E	Local and International Radiation Safety Regulations • Machine-Specific
0945 - 1045	Safety Interlocks • Emergency Response and Spill Handling • Refresher on
	PPE and Restricted Access Zones
	Integration with Other Lab Techniques
104E 101E	When to Use XRF versus ICP, AAS, or XRD • Complementary Roles in
1045 - 1215	Quality Labs • Multi-Instrument Workflow Optimization • Hybrid Data
	Analysis for Critical Decision-Making
1215 - 1230	Break

LE1013 - Page 7 of 8 LE1013-05-25|Rev.00|30 April 2025

	Final Project – End-to-End Operation Simulation
1230 - 1345	Receive and Log a Sample • Prepare, Calibrate, and Run the Measurement •
	Validate and Interpret Results • Generate and Present a Full Report
	Course Conclusion
1345 - 1400	Using this Course Overview, the Instructor(s) will Brief Participants about
	Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator Reem Dergham, Tel: +974 4423 1327, Email: reem@haward.org

LE1013 - Page 8 of 8

