

<u>COURSE OVERVIEW PE0787</u> <u>Refinery & Petroleum Products Quality Specifications, Blending,</u> <u>Mixing, Optimization, Operational Planning, Quality Control &</u> <u>Profitability</u>

Course Title

Refinery & Petroleum Products Quality Specifications, Blending, Mixing, Optimization, Operational Planning, Quality Control & Profitability

Course Date/Venue

October 12-16, 2025/TBA Meeting Room, Hilton Kuwait Resort, Mangaf, Kuwait City, Kuwait

Course Reference

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using the "MS Excel" applications.

UDED

This course is designed to provide delegates with a detailed and up-to-date overview of refinery and petroleum products quality specifications, blending, mixing, optimization, operational planning, quality control and profitability. It covers the general and organic chemistry and physical and chemical properties of hydrocarbons and petroleum cuts; the petroleum and main non-energy products including the different refinery process technologies; the chemical used in product refinerv processes; and the blendina. troubleshooting refinery operations and practical problems.

During this interactive course, participants will learn the importance of measurement in refinery mass balance and the density measurement require to convert volume to mass; the movement's qualities and tolerances and the list of frequent movements; the refinery optimization, operations planning, equipment optimization and process optimization; the process operations and the concepts of refinery operational; the planning objectives, planning tools, key crude and product qualities as well as crude and product pricing; and the practical refinery modeling, performance measures and rules of thumb for process engineers.

PE0787 - Page 1 of 8

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on refinery and petroleum products quality specifications, blending, mixing, optimization, operational planning, quality control and profitability
- Discuss general and organic chemistry and physical and chemical properties of hydrocarbons and petroleum cuts
- Identify petroleum and main non-energy products including the different refinery process technologies
- Recognize the chemical used in refinery processes as well as carryout product blending, troubleshooting refinery operations and practical problems
- Discuss the importance of measurement in refinery mass balance and the density measurement require to convert volume to mass
- Calculate and store movement's qualities and tolerances and provide the list of frequent movements
- Apply refinery optimization, operations planning, equipment optimization and process optimization
- Optimize process operations and identify the concepts of refinery operational
- Carryout planning objectives, planning tools, key crude and product qualities as well as crude and product pricing
- Illustrate practical refinery modeling, performance measures and rules of thumb for process engineers

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of refinery and petroleum products quality specifications, blending, mixing, optimization, operational planning, quality control and profitability for planning engineers, process engineers, production engineers, scheduling engineers, marketing engineers and estimation engineers. Further, finance managers, commercial managers, estimation managers, section heads, supervisors and refineries/process plant consultants will gain an excellent knowledge from the operational aspects of this course.

Course Fee

US\$ 5,500 per Delegate. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

PE0787 - Page 2 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

•

BAC British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation

**

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

PE0787 - Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Mervyn Frampton is a Senior Process Engineer with over 30 years of industrial experience within the Oil & Gas, Refinery, Petrochemical and Utilities industries. His expertise lies extensively in the areas of Process Troubleshooting, Distillation Towers, Fundamentals of Distillation for Engineers, Distillation Operation and Troubleshooting, Advanced Distillation Troubleshooting, Distillation Technology, Vacuum Distillation, Distillation Column Operation & Control, Oil Movement Storage &

Troubleshooting, Process Equipment Design, Applied Process Engineering Elements, **Plant** Optimization, Revamping & Debottlenecking, Process Process Plant Troubleshooting & Engineering Problem Solving, Process Plant Monitoring, Catalyst Selection & Production Optimization, Operations Abnormalities & Plant Upset, Process Plant Start-up & Commissioning, Clean Fuel Technology & Standards, Flare, Blowdown & Pressure Relief Systems, Oil & Gas Field Commissioning Techniques, Pressure Vessel Operation, Gas Processing, Chemical Engineering, Process Reactors Start-Up & Shutdown, Gasoline Blending for Refineries, Urea Manufacturing Process Technology, Continuous Catalytic Reformer (CCR), De-Sulfurization Technology, Advanced Operational & Troubleshooting Skills, Principles of Operations Planning, Rotating Equipment Maintenance & Troubleshooting, Hazardous Waste Management & Pollution Prevention, Heat Exchangers & Fired Heaters Operation & Troubleshooting, Energy Conservation Skills, Catalyst Technology, Refinery & Process Industry, Chemical Analysis, Process Plant, Commissioning & Start-Up, Alkylation, Hydrogenation, Dehydrogenation, Isomerization, Hydrocracking & De-Alkylation, Fluidized Catalytic Cracking, Catalytic Hydrodesulphuriser, Kerosene Hydrotreater, Thermal Cracker, Catalytic Reforming, Polymerization, Polyethylene, Polypropylene, Pilot Water Treatment Plant, Gas Cooling, Cooling Water Systems, Effluent Systems, Material Handling Systems, Gasifier, Gasification, Coal Feeder System, Sulphur Extraction Plant, Crude Distillation Unit, Acid Plant Revamp and Crude Pumping. Further, he is also well-versed in HSE Leadership, Project and Programme Management, Project Coordination, Project Cost & Schedule Monitoring, Control & Analysis, Team Building, Relationship Management, Quality Management, Performance Reporting, Project Change Control, Commercial Awareness and Risk Management.

During his career life, Mr. Frampton held significant positions as the **Site Engineering Manager**, **Senior Project Manager**, **Process Engineering Manager**, **Project Engineering Manager**, **Construction Manager**, **Site Manager**, **Area Manager**, **Procurement Manager**, **Factory Manager**, **Technical Services Manager**, **Senior Project Engineer**, **Process Engineer**, **Project Engineer**, **Assistant Project Manager**, **Handover Coordinator** and **Engineering Coordinator** from various international companies such as the **Fluor Daniel**, **KBR** South Africa, **ESKOM**, MEGAWATT PARK, CHEMEPIC, PDPS, CAKASA, **Worley Parsons**, Lurgi South Africa, **Sasol**, **Foster Wheeler**, **Bosch & Associates**, **BCG** Engineering Contractors, Fina Refinery, Sapref Refinery, Secunda Engine Refinery just to name a few.

Mr. Frampton has a **Bachelor's degree** in **Industrial Chemistry** from **The City University** in **London**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Trainer/Assessor** by the **Institute of Leadership & Management (ILM)** and has delivered numerous trainings, courses, workshops, conferences and seminars internationally.

PE0787 - Page 4 of 8

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 12 th of October 2025
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0020 0000	General Chemistry
0000 - 0000	Basic Material Basic Chemical Reaction Theory of Gases
	Organic Chemistry
0900 - 0930	Structure of Organic Compounds • Reaction of Organic Compounds • Detail Study
	of Alkenes Alkenes Aromatics & Alcohol Nitrogen Compounds
0930 - 0945	Break
	Physical & Chemical Properties of Hydrocarbons & Petroleum Cuts
0945 1100	General Hydrocarbon Classification • Structure & Properties of Hydrocarbons •
0945 - 1100	Main Types of Organic Compounds • Physical & Chemical Properties of
	Hydrocarbon Mixtures • Characterization of Petroleum Cuts • Molar Weight
	Physical & Chemical Properties of Hydrocarbons & Petroleum Cuts (cont'd)
1100 1215	Volatility : TBP & ASTM Distillations • Mean Average Temperature (Mav) •
1100 - 1213	Characterization Factor • Vapor Pressure • Specific Gravity • Viscosity •
	Critical Properties
1215 – 1230	Break
	Petroleum Products
	Properties, Characteristic & Formulation of Combustible Products • For Each Chief
1220 1220	Product; LPG, Automotive Gasoline, Jet Fuel, Automotive Diesel Fuel, Domestic Fuel
1250 - 1550	Oil & Heavy Fuel Oils, the Following are Developed • Market Trends – Volatility
	Characteristics – Combustion Properties • Under Cold Conditions & Flow - Stability,
	Storage Behavior
	Main Non-Energy Products
1220 1420	Bitumen • The Different Types of Bitumen; Pure, Outbacks, Polymer Modified,
1330 - 1420	<i>Emulsion, etc</i> • <i>Lubricants</i> • <i>Function of Lubricants</i> • <i>Composition of Lubricants</i> •
	Base Oils & Additives • Formulation • Engine Oils Industrial Oils
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day One

Day 2:	Monday, 13 th of October 2025
0730 - 0830	Different Refinery Process Technologies
	Parameters to be Monitored & Controlled in Different Processes & Their Use in
	Maintaining Product Specification
0830 - 0930	Chemical Used in Refinery Processes
	Nature of Chemical • Optimization Usage • Chemical Hazards & Prevention • Safe
	Storage of the Chemicals • Petroleum Product Specification and Testing
0930 - 0945	Break

PE0787 - Page 5 of 8

0945 - 1100	Product Blending
	<i>Reid Vapor Pressure</i> • Octane Blending • Blending for Other Properties • Case-
	Study Problem: Gasoline Blending • Case Study Problem: Diesel & Jet Fuel
	Blending
	Troubleshooting Refinery Operations
	Crude Distillation • Delayed Coking Cycles • Delayed Coking Process • Amine
1100 – 1215	Regeneration & Scrubbing • Sulfur Recovery • Alkylation • Fluid Catalytic
	Cracking Units • FCCU Product Fractionation • Saving Energy at Reduced Feed
	Rates
1215 - 1230	Break
	Practical Problems
1000 1000	Additional Distillation Problems • Fouled Trays • Dehydrating Light-Ends
1230 - 1330	Towers • Handling of Different Probable Emergencies • Vapor-Liquid Separation •
	Refinery Metallurgy for Novices • Unusual Noises & Vibrations
	Refinery Mass Balance
1330 - 1420	Importance of Measurement • Accurate Crude Inputs are Critical • Fuel
	Measurement can be a Large, Unexpected Source of Error
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Day 3:	Tuesday, 14 th of October 2025
0720 0020	Refinery Mass Balance (cont'd)
	Density Measurement Required to Convert Volume to Mass • Refinery Evaluates
0750 - 0850	Systems for Mass Balance Improvements • The Theory of Coriolis-Based Direct Mass
	Measurement
	Material Movements
0830 - 0930	VM-PA Calculates & Stores Movement's Quantities • Calculate Movement
	Quantities and Tolerances
0930 - 0945	Break
	Material Movements (cont'd)
0945 – 1100	Transfers can have a "Complete/Incomplete" Status • Provides the User with a List
	of Frequent Movements
	Refinery Optimization
	Definitions & Basic Optimization Tools • Breakeven Analysis • Graphical
1100 – 1215	Solutions • Numerical Methods • Incremental Method • Linear Programming (LP)
	• Quadratic Programming (QP) • Non-Linear Optimization Techniques • Global
	& Local Optima
1215 – 1230	Break
1230 - 1330	Optimizing Operations Planning
	Linear Programs (LP) & Non-Linear Models • Optimizing Unit Performance •
	Scheduling
1330 - 1420	Equipment Optimization
	Heaters/Pumps/Compressors/Heat Exchangers • Critical Parameter Monitoring for
	Maximum Utilization & Optimization for each Specific Equipment • Resources
	Optimization like Catalyst/Chemicals/Utilities • Operation

PE0787 - Page 6 of 8

AWS

	Recap
1420 1420	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Three
Day 4:	Wednesday, 15 th of October 2025
	Process Optimization
	IOW • Key Process Parameter Monitoring & Controlling for Maximum Utilization
0730 – 0830	& Optimization for each Area Process • Conversions Losses & Yield Monitoring •
	Interactions of the Key Parameters Between Processes • Improving Unit Reliability
	Reducing Refinery Losses, Energy Conservation Reducing Flare/Slop Process
	Optimizing Process Operations
0020 0020	Key Parameters for Optimization • Crude Unit Cut Points • Reformer Severity •
0830 - 0930	FCC Conversion • Other Key Parameters • Integrating Unit Performance •
	Utilities
0930 - 0945	Break
0045 1100	Concepts of Refinery Operational Profitability
0945 - 1100	Gross Refining Margin (GRM) • Net Refining Margin • Contribution Margin
	Planning Objectives
	Production Plans (Unit Operating Goals, Blending Operations) • Feedstock Selection
1100 – 1215	• Feasibility • Optimality (Minimum Cost, Maximum Profit) • Optimal Product
	Mix • Marginal Economics • Investment Opportunities • Planning versus
	Scheduling
1215 - 1230	Break
	Planning Tools
1230 - 1330	Blending Methods (Linear (Volume/Weight), Blending Indices, Interaction
1200 1000	Coefficients) • Process Models (Fixed Yield, Operational Modes, Simulation)
	Planning Tools (cont'd)
	Modeling Tools (Simple Stock Balances (Spreadsheet), Linear Programming (LP's),
1330 - 1420	Feasibility, Linear Relationships, Non-Linear Programming (NLP's), Feasibility,
1000 1120	Local Ontima, Distributed Error Recursion & Integer Programming) • Model Types
	(Blending, Single Refinery, Multi-Refinery and Distribution & Time Period)
	Recan
1.100 1.100	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 – 1430	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four
1100	

Day	5	:
-----	---	---

Thursday, 16th of October 2025

AWS

0730 - 0830	Key Crude & Product Qualities
	Sulfur & Gravity Other Properties Environmental Regulations
0830 - 0930	Crude & Product Pricing
	Pricing Basis (FOB, CIF & Import Parity)
0930 - 0945	Break
0945 – 1100	Practical Refinery Modeling
	Constructing a Simple LP • The Real World is Non-Linear (The Pooling Problem,
	Delta-Base Modeling & Convexity Constraints) • Marginal Values or Shadow Prices
	• Crude Ranking & Evaluation • Weight versus Volume Basis
1100 – 1215	Performance Measures
	Benchmark Margin Analysis • Model Validation • Back-Casting • "The Farmer &
	the Bale of Hay"

PE0787 - Page 7 of 8

1215 – 1230	Break
1230 - 1300	Rules of Thumb for Process EngineersSuggestions for New Process Operating EngineersPlanning a Performance Test• Understanding Control Board Instruments• Importance & Use of
	Instrumentation in Process Technology
	Rules of Thumb for Process Engineers (cont'd)
1300 - 1345	How to Make Field Measurements • Unit of Measurement Used in Petroleum
	Technology & Conversion Factors • The People Problem • Effect of Operation
	Parameters on Quality, Economy & Safety
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Hands-on Practical Sessions

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using "MS-Excel" application.

Course Coordinator

Jaryl Castillo, Tel: +974 4423 1327, Email: jaryl@haward.org

PE0787 - Page 8 of 8

