

COURSE OVERVIEW IE0995 Advanced Certificate in Instrumentation Calibration

CEUS

(30 PDHs)

AWAR

Course Title

Advanced Certificate in Instrumentation Calibration

Course Date/Venue

Session 1: April 20-24, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Session 2: October 05-09, 2025/Business Meeting, Crowne Plaza Al Khobar, Al Khobar, KSA

IE0995

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using one of our state-of-the-art simulators.

This course is designed to provide participants with and up-to-date overview detailed of а instrumentation calibration. lt the covers enhancement of the skills and knowledge of the instrumentation fitter in order to increase their productivity and quality in the work; the good understanding of instrumentation calibration; the scope and characteristics of the discrete-state process control; the control loop characteristics and the instrumentation in hazardous areas; and the different types of instrument devices and features in the ship.

During this interactive course, participants will learn to install instruments and the process of tuning and adjustment of control system; calibrate different types of devices; benchmark procedures for float (Fluke 55008), deadweight tester and BEAMEX (MC5); and recognize the controller (PID), transmitter, PLC, pressure and Team controllers.

IE0995 - Page 1 of 10.

IE0995-04-25|Rev.17|06 November 2024

Course Objectives

Upon successful completion of the course participants will be able to:-

- Apply and gain an advanced knowledge on instrumentation calibration
- Enhance the skills and knowledge of the instrumentation fitter in order to increase their productivity and quality in the work
- Carryout instrumentation calibration and discuss the scope and characteristics of the discrete-state process control
- Determine the control-loop characteristics and apply instrumentation in hazardous areas
- Recognize the different types of instrument devices and features in the ship
- Test, check and install instruments and identify the process of tuning and adjustment of control system
- Perform calibration for different types of devices including benchmarking procedures for float (Fluke 55008), deadweight tester and BEAMEX (MC5)
- Recognize the controller (PID), transmitter, PLC, pressure and Tem controllers

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of instrumentation calibration for instrumentation fitters.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-


30% Lectures

- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

IE0995 - Page 2 of 10.

Course Certificate(s)

(1) Internationally recognized Wall Competency Certificates and Plastic Wallet Card Certificates will be issued to participants who completed a minimum of 80% of the total tuition hours and successfully passed the exam at the end of the course. Certificates are valid for 5 years.

Recertification is FOC for a Lifetime.

Sample of Certificates

The following are samples of the certificates that will be awarded to course participants:-

IE0995 - Page 3 of 10.

IE0995-04-25|Rev.17|06 November 2024

(2) Official Transcript of Records will be provided to the successful delegates with the equivalent number of ANSI/IACET accredited Continuing Education Units (CEUs) earned during the course.

H	• * CEUs •	* Haward Technology * CE Haward Technol Continuing Professional D	ogy Middle East	Page	and Technology *
	CE	U Official Tran	script of Rec	<u>ords</u>	
TOR Issuance HTME No. Participant Na		14-Nov-19 8667-2014-9020-2555 Abdulsatar Al Otaibi			
Program Ref.	Program	m Title	Program Date	No. of Contact Hours	CEU's
IE0995	Advance Calibratic	d Certificate in Instrumentation	November 10-14, 2019	30	3.0
Total No. of CF	EU's Earned a	s of TOR Issuance Date		1	3.0
			2	6 - 2	
		100	~ /	TRUE COPY	
		469		TRUE COPY	
Haward Techno (IACET), 22010 with the ANSU Provider memil Standard. Haward Techno Education Units IACET is an inte accepted unifor	Cooperative Way, S (IACET 1-2013 Sta bership status, Hr blogy's courses m s (CEUs) in accordan ernational authority m unit of measurem	Approved as an Authorized Provider by uite 600, Hemdon, VA 20171, USA In obti- ndard which is widely recognized as the award Technology is authorized to offer eet the professional certification and c new with the rules & regulations of the Inti- hat evaluates programs according to ent in qualified courses of continuing educat Haward Technology Haward Technology	aning this approval, Haward Teek standard of good practice internation r IACET CEUs for programs that minimuling education requirements fit minimuling education for Continuit strict, research-based criteria and on. r is accredited by	Continuing Education and nology has demonstrated the nally. As a result of their At t qualify under the ANS/// or participants seeking Cont guidelines. The CEU is an	hat it complies uthorized ICET 1-2013 inuing (IACET).
Haward Techno (IACET), 2201 (with the ANSI/ Provider meml Standard. Haward Techno Education Units IACET is an inte accepted unifor	Cooperative Way, St NACET 1-2013 St abership status, Hr ablogy's courses m (CEUs) in accorda ernational authority m unit of measurem	uite 600, Hemdon, VA 20171, USA. In obtindard which is widely recognized as the award Technology is authorized to offer eet the professional certification and c newith the rules & regulations of the Int that evaluates programs according to ent in qualified courses of continuing educat Haward Technology	aning this approval, Haward Teek standard of good practice internation r IACET CEUs for programs that ominiung education requirements for mational Association for Continuit strict, research-based criteria and on. r is accredited by iso best 136115 ceruitre	Maricel De Guzman Academic Director	nat it complies thorized INCET 1-2013 INCET 1. INCET). Internationally

IE0995 - Page 4 of 10. IE0995-04-25|Rev.17|06 November 2024

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

• **BAC**

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day

IE0995 - Page 5 of 10.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Sydney Thoresson, PE, BSc, is a Senior Electrical & Instrumentation Engineer with over 40 years of extensive experience within the Petrochemical, Utilities, Oil, Gas and Power industries. His specialization highly evolves in Electrical Drawing and Schematics, Hazardous Area Classification, Intrinsic Safety, Liquid & Gas Flowmetering, Custody Measurement, Ultrasonic Flowmetering, Loss Control, Gas Measurement, Process

Control Instrumentation, Compressor Control & Protection, Control Systems, Programmable Logic Controllers (PLC), SCADA, Distributed Control Systems (DCS) especially in Honeywell DCS, H&B DCS, Modicon, Siemens, Telemecanique, Wonderware and Adrioit. Moreover, he has vast experience in the field of Safety Instrumented Systems (SIS), Safety Integrity Level (SIL), Emergency Shutdown (ESD), Flowmetering & Custody Measurement, Multiphase Flowmetering, Measurement and Control, Mass Measuring System Batching (Philips), Arc Furnace Automation-Ferro Alloys, Walking Beam Furnace, Blast Furnace, Billet Casting Station, Cement Kiln Automation, Factory Automation and Quality Assurance Accreditation (ISO 9000 and Standard BS 5750).

During Mr. Thoresson's career life, he has gained his thorough and practical experience through various challenging positions such as a **Project Manager**, **Contracts Manager**, **Managing Director**, **Technical Director**, **Divisional Manager**, **Plant Automation Engineer**, **Senior Consulting Engineer**, **Senior Systems Engineer**, **Consulting Engineer**, **Service Engineer** and **Section Leader** from several international companies such as **Philips**, **FEDMIS**, **AEG**, **DAVY International**, **BOSCH** Instrumentation and Control, **Billiton**, **Endress/Hauser**, **Petronet**, **Iscor**, **Spoornet**, **Eskom** and **Afrox**.

Mr. Thoresson is a **Registered Professional Engineering Technologist** and has a **National Higher Diploma** (NHD) & a **National Diploma** in **Radio Engineering** from the **Witwatersrand Technikon**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management (ILM)**, an active member of the International Society of Automation (ISA) and the Society for Automation, Instrumentation, Measurement and Control (SAIMC).

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Duyi	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	<i>Discrete-State Process Control</i> <i>Definition of Discrete-State Control</i> • <i>Characteristic if the System</i>
0930 - 0945	Break

IE0995 - Page 6 of 10.

IE0995-04-25|Rev.17|06 November 2024

IA

:**P**

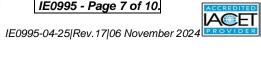
	Discrete-State Process Control (cont'd)
0945 – 1100	Relay Controllers & Ladder Diagrams • Programmable Logic Controllers
	(PLCS)
	Control-loop Characteristics
1100 – 1215	Control System Configurations • Multivariable Control Systems •
	Control System Quality • Stability • Process Loop Tuning
1215 – 1230	Break
1230 - 1420	Practical Session # 1
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2

Duy L	
0730 - 0930	Instrumentation in Hazardous Areas
0750 - 0550	Hazardous Area Classifications
0930 - 0945	Break
0045 1100	Instrumentation in Hazardous Areas (cont'd)
0945 – 1100	Enclosure Classification Designations
1100 – 1215	Instrumentation in Hazardous Areas (cont'd)
1100 - 1213	Intrinsically Safe Design
1215 – 1230	Break
1230 - 1420	Practical Session # 2
1420 - 1430	Recap
1430	Lunch & End of Day Two
0020 0020	Discrete-State Process Control
0830 – 0930	Definition of Discrete-State Control • Characteristic if the System
0930 - 0945	Break
	Discrete-State Process Control (cont'd)
0945 - 1100	Relay Controllers & Ladder Diagrams • Programmable Logic Controllers
	(PLCS)
	Control-loop Characteristics
1100 – 1215	Control System Configurations • Multivariable Control Systems •
	Control System Quality • Stability • Process Loop Tuning
1215 – 1230	Break
1230 - 1420	Practical Session # 1
1420 - 1430	Recap
1430	Lunch & End of Day One

Dav 3

Types & Features of Instrument Devices
Break
Calibration for Different Types of Devices
Calibration for Different Types of Devices (cont'd)
Break
Practical Session # 3
Recap
Lunch & End of Day Three


Day 4

0730 - 0930	Benchmark for Float (Fluke 55008) – Voltage, Frequency, RTI, Oms & Resistance
0930 - 0945	Break
0945 – 1100	Benchmark for Deadweight Tester (for pressure)

IE0995 - Page 7 of 10.

AWS

UKAS

1100 – 1215	Benchmark for BEAMEX (MC5)- Multi-Voltage & Pressure
1215 – 1230	Break
1230 - 1420	Practical Session # 4
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5

0730 - 0930	Controller (PID)- Calibration & General Knowledge Transmitter (Calibration for Pneumatic System)
0930 - 0945	Break
0945 - 1100	PLC (Setting & Programming)
0945 - 1100	Pressure & Tem Controllers
1100 – 1215	Practical Session # 5
1215 – 1230	Break
1230 – 1300	Practical Session # 5 (cont'd)
1300 – 1315	Course Conclusion
1315 – 1415	COMPETENCY EXAMINATION
1415 – 1430	Presentation of Certificates
1430	Lunch & End of Course

Practical Sessions

Theis Practical and highly-interactive course includes real-life case studies and exercises: -

Allen Bradley SLC 500 Simulator

Allen Bradley Micrologix 1000 Simulator (Digital)

Allen Bradley SLC 5/03

PN

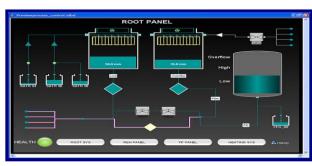
Allen Bradley Micrologix 1000 Simulator (Analog)

IE0995 - Page 8 of 10.

IE0995-04-25|Rev. 17|06 November 2024

Allen Bradley WS5610 PLC **Simulator PLC5**

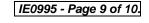
Siemens S7-1200 Simulator


Siemens S7-400 Simulator

Siemens SIMATIC S7-300

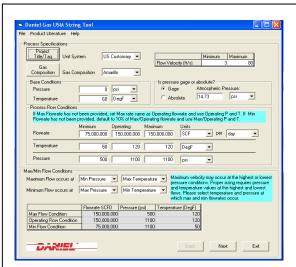
GE Fanuc Series 90-30 PLC Simulator

Siemens S7-200 Simulator


HMI SCADA

.

UKAS


0

IE0995-04-25|Rev.17|06 November 2024



Gas Ultrasonic Meter (USM) Sizing Tool Simulator

ocess Conditio Project Title /		Fluid List	Fluid Gasoline			Spec	itic Gravity 300 kg/	/ Density cubic meter	•	Viscosity	1 Centistoke
Flow Rate	Minimum	200	Operating 4	00	faximum H	600	Units Cubic M	eters	Ŧ	Per Hou	•
Temperature		20		60 [100	C *F	0° °C			
Pressure				60 [100	kPa		•		
leter Selection Material Carbon Steel E	lody and Fla	nges (-46°C	to 150°C) 💽		Class Ra NNSI / PN 2		ransducer "T-01 trans	ducer (-50°C	to 100°C	with NBR (o-rings
Nominal Line Si 6 inch (DN 15)		Schedule Schedul		ons T	Bore ID 6.065	Inches	•	Meter Lin ±0.1		Flow Direc	

Liquid Ultrasonic Meter Sizing Tool Simulator

Siemens SIMATIC Step 7 Professional Software

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

IE0995 - Page 10 of 10.


IE0995-04-25|Rev.17|06 November 2024

	Turbin	e Meter	Selection		r i		Valv	ve Selec	tion			
cess Conditio Project Title /		Fluid Li	Fluid ist Gasoline		_	Specific Gravity .	/ Density acífic Gravity		Viscos	<u> </u>	Centistoke	•
Flow Rate	Minimum	200	Operating 40	Maximum	600	Units Gallons		Ŧ	Per	vlinute	×	
l'emperature		20	6	0	100	@ "F	0.10					
^o ressure			6	0	100	PSI		•				
	C Series 1 C Series 1											

Liquid Turbine Meter and Control Valve Sizing Tool Simulator

		Measurement Orifice	
pecific Gravity	Flowing Specific Gravity	 User Entered Calculated (from density) 	Base Specific Gravity
ensity-		Saturated C User Entered	c foot
		Dia	Flow Type
lominal Size 2	Inches	Pipe 2.067" Sch 40, STD, Sch 405	Flow Type
lominal Size 2	Inches Flow Rate	Pipe 2067" Sch 40, STD, Sch 405	
ptions Calculate		Galons Per Minute	Liquid

Orifice Flow Calculator Simulator

AutoSIM – 200 Automation Simulator