

COURSE OVERVIEW ME0390 Heavy Duty Gas Turbine Major Inspections

Course Title

Heavy Duty Gas Turbine Major Inspections

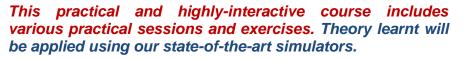
Course Reference

ME0390

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Date/Venue



Session(s)	Date	Venue
1	April 13-17, 2025	Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh
		Zayed Road, Dubai, UAE
2	July 20-24, 2025	Al Khobar Meeting Room, Hilton Garden Inn, Al Khobar,
		KSA
	October 19-23, 2025	Oryx Meeting Room, Double Tree by Hilton AI Saad,
		Doha, Qatar
3	December 15-19, 2025	Ajman Meeting Room, Grand Millennium Al Wahda
		Hotel, Abu Dhabi, UAE

Course Description

This course is designed to provide participants with a detailed and up-to-date overview of Heavy Duty Gas Turbine Major Inspections. It covers the fundamentals, components, operation principles and types of gas turbine; the different level of maintenance including PM, CM & PDM; the safety standards, personal protective equipment (PPE) and procedures for site preparation; the specialized tools and equipment used during major inspections; the OEM (original equipment manufacturer) and OMM (operation and maintenance manual); the purpose, frequency and scope of major inspections and others like limits of DR according to GE standard; and the replacement of selected external components including variable geometry actuators, control unit, VG pump, VBV doors and rigging of system if applicable.

Further, the course will also discuss the replacement of lubrication and scavenge pump, pressure and temperature sensors, fuel nozzles and vibration accelerometers; the replacement of ignition components, starter, speed sensors, carbon seals, and external pipes and hoses; the removal of low-and high-pressure turbine, stage 1 nozzle module, combustor module and bearing inner race; the stage 2 high pressure turbine nozzle replacement as well as the installation of stage 1 nozzle module; and the removable of variable inlet guide vane (VIGV), stage 0 blade replacement, removable and installation of LP compressor and replacement of #1 air/oil seal.

ME0390- Page 1 of 8

ME0390-04-25|Rev.05|07 March 2025

During this interactive course, participants will learn the LP compressor stage 1-3 blade replacement and LP compressor stage 0-3 vane replacement; the auxiliary gear box check and techniques for ensuring proper alignment; the calibration of turbine components; the steps for safely commissioning and turbine post-inspection; the performance tests to verify turbine functionality; and the techniques for analyzing turbine vibrations to identify issues.

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Apply and gain a comprehensive knowledge on heavy duty gas turbine major inspections
- Discuss the fundamentals, components, operation principles and types of gas turbine
- Identify different level of maintenance including PM, CM and PDM
- Apply the safety standards, personal protective equipment (PPE) and procedures for site preparation
- Recognize the specialized tools and equipment used during major inspections
- Use OEM (original equipment manufacturer) and OMM (operation and maintenance manual)
- Discuss the purpose, frequency and scope of major inspections and others like limits of DR according to GE standard
- Replace selected external components including variable geometry actuators, control unit, VG pump, VBV doors and rigging of system if applicable
- Replace lubrication and scavenge pump, pressure and temperature sensors, fuel nozzles and vibration accelerometers
- Replace ignition components, starter, speed sensors, carbon seals and external pipes and hoses
- Illustrate the removal of low and high-pressure turbine, stage 1 nozzle module, combustor module and bearing inner race
- Apply stage 2 high pressure turbine nozzle replacement as well as the installation of stage 1 nozzle module and high-pressure and low-pressure turbine module
- Carryout removable of variable inlet guide vane (VIGV), stage 0 blade replacement, removable and installation of LP compressor and replacement of #1 air/oil seal
- Apply LP compressor stage 1-3 blade replacement and LP compressor stage 0-3 vane replacement
- Identify auxiliary gear box check and apply techniques for proper alignment and calibration of turbine components
- Illustrate steps for safely commissioning the turbine post-inspection
- Conduct performance tests to verify turbine functionality and techniques for analyzing turbine vibrations to identify issues

ME0390- Page 2 of 8

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of heavyduty gas turbine major inspections for inspection engineers, inspectors, supervisors and managers, operations managers, asset managers, maintenance engineers, reliability engineers, gas turbine technicians, maintenance planners/schedulers: personnel, safety and compliance personnel, engineers and technicians from gas turbine OEMS, quality assurance/quality control personnel.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

Dubai Abu Dhabi	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Doha	US\$ 6,000 per Delegate. This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Al Khobar	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking

ME0390- Page 3 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

• BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

<u>The International Accreditors for Continuing Education and Training</u>
 <u>(IACET - USA)</u>

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

ME0390- Page 4 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Karl Thanasis, PEng, MSc, MBA, BSc, is Senior Mechanical & Maintenance Engineer with over 45 years of extensive industrial experience. His wide expertise includes Piping & Pipeline, Maintenance, Repair, Shutdown, Turnaround & Outages, Maintenance & Reliability Management, Mechanical Maintenance Planning, Scheduling & Work Control, Advanced Techniques in Maintenance Management, Predictive & Preventive Maintenance, Maintenance & Operation Cost Reduction Techniques, Reliability

Centered Maintenance (RCM), Machinery Failure Analysis, Rotating Equipment **Reliability** Optimization & Continuous Improvement, Material Cataloguing, Mechanical & Rotating Equipment Troubleshooting & Maintenance, Root Cause Analysis & Reliability Improvement, Condition Monitoring, Root Cause Failure Analysis (RCFA), Steam Generation, Steam Turbines, Power Generator Plants, Gas Turbines, Combined Cycle Plants, Boilers, Process Fired Heaters, Air Preheaters, Induced Draft Fans, All Heaters Piping Work, Refractory Casting, Heater Fabrication, Thermal & Fired Heater Design, Heat Exchangers, Heat Transfer, Coolers, Power Plant Performance, Efficiency & Optimization, Storage Tank Design & Plant Management, Boiler & Steam System Fabrication, Thermal Power Management, Pump Operation & Maintenance, Chiller & Chiller Plant Design & Installation, Pressure Vessel, Safety Relief Valve Sizing & Selection, Valve Disassembling & Repair, Pressure Relief Devices (PSV), Hydraulic & Pneumatic Maintenance, Advanced Valve Technology, Pressure Vessel Design & Fabrication, Pumps, Turbo-Generator, Turbine Shaft Alignment, Lubrication, Mechanical Seals, Packing, Blowers, Bearing Installation, Couplings, Clutches and Gears. Further, he is also versed in Wastewater Treatment Technology, Networking System, Water **Network Design**, Industrial **Water Treatment** in Refineries & Petrochemical Plants, Piping System, Water Movement, Water Filtering, Mud Pumping, Sludge Treatment and Drying, Aerobic Process of Water Treatment that includes Aeration, Sedimentation and Chlorination Tanks. His strong background also includes Design and Sizing of all Waste Water Treatment Plant Associated Equipment such as Sludge Pumps, Filters, Metering Pumps, Aerators and Sludge Decanters.

Mr. Thanasis has acquired his thorough and practical experience as the **Project** Manager, Plant Manager, Area Manager - Equipment Construction, Construction Superintendent, Project Engineer and Design Engineer. His duties covered Plant Preliminary Design, Plant Operation, Write-up of Capital Proposal, Investment Approval, Bid Evaluation, Technical Contract Write-up, Construction and Subcontractor Follow up, Lab Analysis, Sludge Drying and Management of Sludge Odor and Removal. He has worked in various companies worldwide in the USA, Germany, England and Greece.

Mr. Thanasis is a **Registered Professional Engineer** in the **USA** and **Greece** and has a **Master's** and **Bachelor's** degree in **Mechanical Engineering** with **Honours** from the **Purdue University** and **SIU** in **USA** respectively as well as an **MBA** from the **University** of **Phoenix** in **USA**. Further, he is a **Certified Internal Verifier/Trainer/Assessor** by the **Institute of Leadership & Management (ILM)** a **Certified Instructor/Trainer** and has delivered numerous trainings, courses, seminars, workshops and conferences worldwide

ME0390- Page 5 of 8

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0900	<i>Gas Turbine Fundamentals</i> : Introduction to Gas Turbine Components, Operation Principles & Types
0900 - 0930	Overview of Different Level of Maintenance Including PM, CM & PDM
0930 - 0945	Break
0945 - 1100	<i>Safety Procedures & Preparations</i> : <i>Safety Standards, Personal Protective Equipment (PPE) & Site Preparation</i>
1100 – 1200	Tools & Equipment for Inspection : Overview of the Specialized Tools & Equipment Used During Major Inspections and Rigging Principals
1200 – 1215	Break
1215 - 1420	Using OEM (Original Equipment Manufacturer) OMM (Operation and Maintenance Manual)
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2

Day Z	
	Overview of Major Inspections with DR in Case of Delayed Maintenance:
0730 - 0830	Purpose, Frequency & Scope of Major Inspections and others Like Limits of DR
	According to GE Standard
0820 0020	Replacement of Selected External Components Including Variable
0830 - 0930	Geometry Actuators
0930 - 0945	Break
0945 – 1100	Replacement of Hydraulic Control Unit, VG Pump, VBV Doors & Rigging
0945 - 1100	of System if Applicable
1100 1200	Replacement of Lubrication & Scavenge Pump, Pressure & Temperature
1100 – 1200	Sensors, Fuel Nozzles, Vibration Accelerometers
1200 – 1215	Break
1215 1420	Replacement of Ignition Components, Starter, Speed Sensors, Carbon
1215 – 1420	Seals, & External Pipes & Hoses
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3

Duy 5	
0730 - 0830	Removal Low Pressure Turbine
	Removal High Pressure Turbine Module
0830 - 0930	Removal Stage 1 Nozzle Module
	Removal Combustor Module
0930 - 0945	Break
0945 - 1100	Remove No.5 Bearing Inner Race
	Remove No.5 Bearing
	Stage 2 High Pressure Turbine Nozzle Replacement

ME0390- Page 6 of 8

ME0390-04-25|Rev.05|07 March 2025

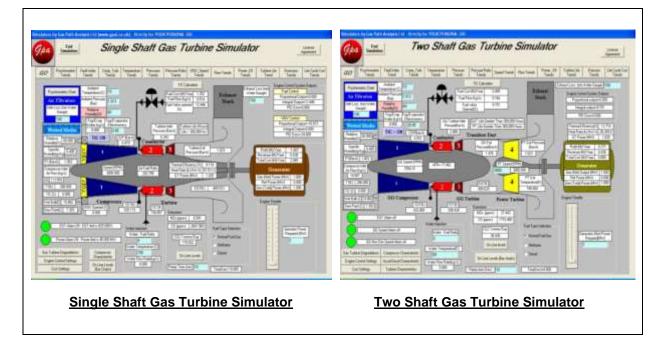
1100 – 1200	Installation Combustor Module (DLN Fundamental & Combustion Theory)
1200 - 1215	Installation Stage 1 Nozzle Module Break
1215 - 1420	Installation High Pressure Turbine Module
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4

Duy +	
0730 - 0830	Installation of Low-Pressure Turbine Module
0830 - 1930	Removable of Variable Inlet Guide Vane (VIGV)
	Stage 0 Blade Replacement
0930 - 0945	Break
0945 - 1100	Removable & Installation of LP Compressor
	Replacement of #1 Air/Oil Seal
1100 – 1200	LP Compressor Stage 1-3 Blade Replacement
	LP Compressor Stage 0-3 Vane Replacement
1200 – 1215	Break
1215 - 1420	AGB (Auxiliary Gear Box Check)
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5

0730 - 0830	<i>Alignment & Calibration</i> : Techniques for Ensuring Proper Alignment & Calibration of Turbine Components	
0830 - 0930	Commissioning Steps: Steps for Safely Commissioning the Turbine Post- Inspection	
0930 - 0945	Break	
0945 - 1100	Performance Testing : Procedures for Conducting Performance Tests to Verify Turbine Functionality	
1100 – 1230	<i>Vibration Analysis and Rotor Dynamics</i> : Techniques for Analyzing Turbine Vibrations to Identify Issues	
1230 - 1245	Break	
1245 - 1345	<i>Group Project</i> : Teams Work on a Simulated Reassembly & Commissioning Exercise, Applying Learned Techniques	
1345 – 1400	Course Conclusion	
1400 - 1415	POST-TEST	
1415 – 1430	Presentation of Course Certificates	
1430	Lunch & End of Course	


ME0390- Page 7 of 8

Simulator (Hands-on Practical Sessions)

Practical session will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "Single Shaft Gas Turbine Simulator" and "Two Shaft Gas Turbine Simulator".

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari@haward.org

ME0390- Page 8 of 8

