

COURSE OVERVIEW EE1141 Power Systems Quality Analysis & Problem Solving

Course Title

Power Systems Quality Analysis & Problem Solving

Course Date/Venue

August 04-08, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

(30 PDHs)

Course Reference EE1141

<u>Course Duration/Credits</u> Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Power Systems Quality Analysis and Problem Solving. It covers the types and sources of power quality disturbances; the voltage sags and swells and harmonics in power systems; the power factor and reactive power including power quality standards and compliance; the power quality monitoring equipment, measurement techniques and parameters and power quality data interpretation; and the site surveys and power quality audits, voltage imbalance and flicker.

During this interactive course, participants will learn the PQ issues in distributed energy systems and root cause analysis for PQ issues; the harmonic filters and reactors, uninterruptible power supplies (UPS) and conditioners; the power factor correction strategies, surge protection and grounding techniques and voltage regulation and stabilization; the power quality in transmission and distribution and power quality in industrial plants; the PQ impacts of renewable integration, smart grid and PQ monitoring; and the economic impact of power quality issues, PQ solutions for critical systems and reporting and communication of PQ findings.

EE1141- Page 1 of 10

EE1141-08-25/Rev.00|18 May 2025

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on power systems quality analysis and problem solving
- Identify the types and sources of power quality disturbances as well as voltage sags and swells and harmonics in power systems
- Discuss power factor and reactive power including power quality standards and compliance
- Recognize power quality monitoring equipment, measurement techniques and parameters and power quality data interpretation
- Carryout site surveys and power quality audits and identify voltage imbalance and flicker
- Address PQ issues in distributed energy systems and root cause analysis for PQ issues
- Determine harmonic filters and reactors, uninterruptible power supplies (UPS) and conditioners
- Apply power factor correction strategies, surge protection and grounding techniques and voltage regulation and stabilization
- Employ power quality in transmission and distribution and power quality in industrial plants
- Recognize PQ impacts of renewable integration, smart grid and PQ monitoring
- Discuss economic impact of power quality issues, design PQ solutions for critical systems and apply reporting and communication of PQ findings

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a **Tablet PC**.

ilm

ET

Who Should Attend

This course provides an overview of all significant aspects and considerations of power systems quality analysis and problem solving for electrical engineers, industrial plant engineers, facility managers, maintenance engineers and technicians and utility company personnel.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

EE1141- Page 2 of 10

EE1141-08-25/Rev.00|18 May 2025

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Haward's Certificates are accredited by the following international accreditation organizations:

• B

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

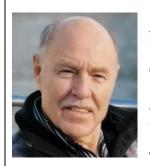
Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

EE1141- Page 3 of 10


EE1141-08-25/Rev.00|18 May 2025

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Fred Du Plessis is a Senior Electrical Engineer with over 30 years of extensive experience within the Oil, Gas, Petrochemical, **Refinery** & **Power** industries. His expertise widely covers in the areas of Thermal Gas Power Generation, Power Station Operations, Power Generation Plant Outage Management, Power System Analysis, Power System Generation & Distribution, Electric Power System Design, Renewable Energy, Energy Storage Technologies, Maintenance, Testing & Troubleshooting, Transformer Protection, Transformer Problem and Failure Investigations, Power System

Operation and Control, Fault Analysis in Power Systems, HV/MV Cable Splicing, High Voltage Electrical Safety, High Voltage Circuit Breaker Inspection & Repair, High Voltage Power System, HV Equipment Inspection & Maintenance, HV Switchgear Operation & Maintenance, Resin / Heat Shrink & Cold Shrink Joints, HV/LV Equipment, ORHVS for Responsible and Authorized Person High Voltage Regulation, Transformers Maintenance, inspections & repairs, Commissioning of LV & HV Equipment, Oil Purification and High Voltage Maintenance, HT Switch Gear -Testing, Safe Operating, Maintenance, Inspection & Repairs on LV & HT Cables - Testing (Pulse & Megger), Line Patrol in Low Voltage & Distribution, Transmission, Operating Principles up to 132KV, Abnormal Conditions & Exceptions, Commissioning & Testing, Transformer Inspections & Repairs, Live Line Work up to 33KV, Basic Power System Protection, High Voltage Operating Preparedness Phasing (110V to 132KV), HV Operating & Fault Finding (up to 132KV), Maintenance & Construction Supervision, VSD/VFD Installations & Testing, Electrical Panel Design, VSD/VFD Installations & Testing, Instrument Installation and wiring, AC/DC Supplies & Change Over Systems, AC & DC Winders and VLF Testing, Gas Turbines, Steam Turbine with a Station Generation, Project Management & Project Controls, Water Treatment & Reverse Osmosis Plant Management and Mechanical Maintenance Management.

During Mr. Du Plessis's career life, he has gained his practical experience through several significant positions and dedication as the Project Manager/Owner, Maintenance Manager, Project Excecution Manager, Commissioning & Operating Manager, Acting Operating Manager, Optimization/Commissioning Manager, Operating Support Manager, Operating Production/Shift Manager, Operations Lead Engineer, Electrical Engineer, Production/Maintenance Planner, Unit Shift Supervisor, Principal Plant Operator, Workshop & Maintenace Consultant, Assistant Electrical Supervisor, Trainee Motor Mechanic and Senior Instructor/Trainer from various international power station companies like the Dunamis Energy, Peterhead Power Station, Lijaco Services, Eskom, Matla Power Station, Grootvlei Power Station, Ellisras Brick & Ceramic, Hlalisanani Mechanical Contractor, Matimba Power Station, Matimba Power Station, Eskom Kriel Power Station and Transvaal Provincial.

Mr. Du Plessis has a **Bachelor's** (with Honours) degree in **Operations Management**. Further, he holds certification in Red & Silver Seal Accreditation Power Generation (ESETA), a SAMTRAC & NOSA Auditor - (NOSA), a Certified Instructor/Trainer and has further delivered various trainings, seminars, conferences, workshops and courses globally.

EE1141- Page 4 of 10

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Monday, 04 th of August 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction to Power Quality
	Definition and Importance in Power Systems • Power Quality Standards (IEEE 519, IEC 61000) • Key Power Quality Parameters • Effects of Poor Power Quality on Utilities and End-Users
0930 - 0945	Break
	Types & Sources of Power Quality Disturbances
0945 – 1030	Voltage Sags and Swells • Transients and Spikes • Harmonic Distortion • Flicker,
	Interruption and Imbalance
	Voltage Sags & Swells
1030 - 1130	Root Causes and Classification • Equipment Sensitivity and Impact • Mitigation
	Techniques • Standards for Voltage Tolerance
	Harmonics in Power Systems
1130 – 1215	Fundamentals of Harmonics and Waveform Distortion • Harmonic Sources:
	Nonlinear Loads • Total Harmonic Distortion (THD) Calculation • Resonance and
	Mitigation Techniques
1215 – 1230	Break
1230 - 1330	Power Factor & Reactive Power
	Real, Reactive and Apparent Power • Causes and Effects of Poor Power Factor •
	Correction Using Capacitors and Filters • Utility Penalties and Economic Impacts
1330 - 1420	Power Quality Standards & Compliance
	Overview of IEEE 519, IEC 61000, EN 50160 • Compliance Thresholds and Industry
	Practices • Utility Responsibilities and Customer Limits • Case Study on Standard
	Application
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the Topics
4.100	that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

EE1141- Page 5 of 10 EE1141-08-25/Rev.00/18 May 2025

Day 2:	Tuesday, 05 th of August 2025
	Power Quality Monitoring Equipment
0730 – 0830	Types of PQ Analyzers and Loggers • Installation and Configuration Basics • Data
	Logging and Synchronization • Real-Time versus Post-Event Monitoring
0830 - 0930	Measurement Techniques & Parameters
	RMS Voltage and Current • Crest Factor, K-Factor and Distortion Factor • Harmonic
	Spectrum Analysis • Capturing Transient Events
0930 - 0945	Break
0945 - 1100	Power Quality Data Interpretation
	Analyzing Waveform Recordings • Pattern Recognition for Fault Identification •
	Duration versus Magnitude Assessment • Creating PQ Event Logs
1100 - 1215	Site Surveys & Power Quality Audits
	Objectives and Methodology • Key Instruments and Measurements • Load Profile
	Assessment • Reporting and Recommendations
1215 – 1230	Break
1230 - 1330	Voltage Imbalance & Flicker
	Sources of Imbalance and Flicker • Effects on Equipment and Motors • Monitoring
	and Mitigation • Case Examples from Utility Operations
1330 - 1420	PQ Issues in Distributed Energy Systems
	Impact of DGs and Renewables on PQ • Inverter-Based Resources and Harmonics •
	Voltage Regulation and Ride-Through • Integration and Coordination Challenges
1420 - 1430	Recap
	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the Topics</i>
	that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

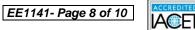
Day 3:	Wednesday, 06 th of August 2025
	Root Cause Analysis for PQ Issues
0730 - 0830	Problem-Solving Framework • Fault Tree and Fishbone Diagrams • Tools: 5-Whys,
	Pareto Analysis • Systematic Troubleshooting Steps
	Harmonic Filters & Reactors
0830 - 0930	Passive versus Active Harmonic Filters • Tuned Filters and Detuned Reactors •
	Sizing and Installation Considerations • Case Study on Harmonic Mitigation
0930 - 0945	Break
	Uninterruptible Power Supplies (UPS) & Conditioners
0945 – 1100	<i>Types of UPS Systems</i> • <i>PQ Conditioning Capabilities</i> • <i>Selection and Maintenance</i> •
	Integration into Critical Loads
	Power Factor Correction Strategies
1100 – 1215	Static versus Dynamic Correction • Use of Automatic Capacitor Banks • Avoiding
	Overcompensation and Resonance • PQ Improvements Post-PFC
1215 – 1230	Break
	Surge Protection & Grounding Techniques
1230 – 1330	Surge Types and Protective Devices • Best Practices in Grounding Systems • Bonding
	and Shielding Methods • Coordination of SPDs
	Voltage Regulation & Stabilization
1330 – 1420	Tap-Changing TransformersVoltage Regulators and BoostersLoad Tap Changers
	(LTC) Operations • Coordination with PQ Improvement
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the Topics
	that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

 EE1141- Page 6 of 10

 EE1141-08-25/Rev.00/18 May 2025

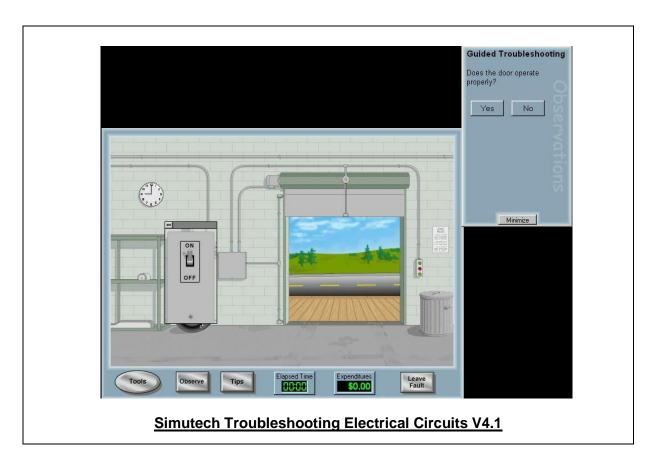
CM

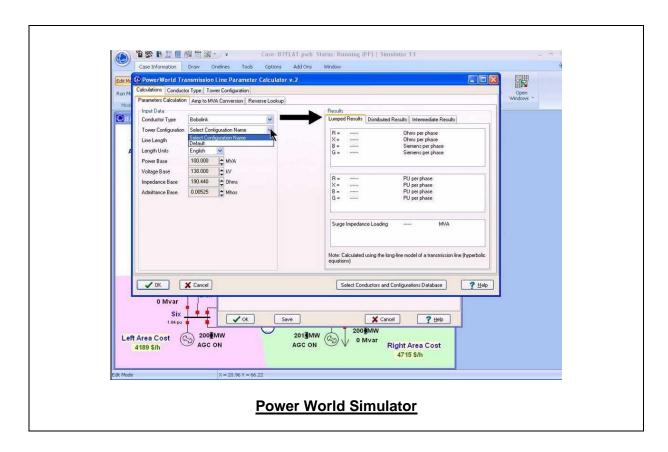
Day 4:	Thursday, 07 th of August 2025
	Power Quality in Transmission & Distribution
0730 - 0830	Key Challenges in HV and MV Systems • Substation PQ Management •
0.00 0000	Switching Transients and Arc Suppression • Role of SCADA and Digital Relays
	Power Quality in Industrial Plants
0830 - 0930	PQ Issues in Motors, VFDs and Drives • Arc Furnaces and Welding Machines •
	PQ Solutions for Sensitive Loads • Industrial Case Study
0930 - 0945	Break
0000 - 0040	PQ Impacts of Renewable Integration
0945 – 1100	Solar PV and Wind Power Disturbances • Inverter Operation and Harmonics •
0010 1100	Anti-Islanding and Grid Codes • Real-Time Control Strategies
	Smart Grid & PQ Monitoring
1100 – 1215	Role of Smart Meters in PQ • Communication and Data Aggregation • PQ
1100 - 1213	Analytics Platforms • Grid Edge Device Integration
1215 – 1230	Break
1213 - 1230	Case Studies in Problem Solving
1230 – 1330	Transformer Overheating Due to Harmonics • Voltage Sag During Fault Events
1250 - 1550	• Harmonic Resonance in Capacitor Banks • PQ Audit-Led System Upgrade
	Economic Impact of Power Quality Issues
1330 - 1420	Downtime and Process Disruption Costs • Energy Efficiency and PQ Correlation
1550 - 1420	• ROI of PQ Improvement Projects • Cost-Benefit Analysis Models
	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 – 1430	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Topics that were Discussed Today and Adoise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four
Day 5:	Friday, 08 th of August 2025
	Simulation of Power Quality Disturbances
0730 - 0830	Using Simulation Software (e.g., ETAP, PowerFactory) • Model Creation for PQ
	Scenarios • Disturbance Simulation and Waveform Analysis • Interpretation of
	Results
0020 0020	Interactive Problem-Solving Workshop
0830 - 0930	Group-Based PQ Issues Troubleshooting • Data Analysis and Root Cause
0930 - 0945	Detection • Recommended Mitigation Strategies • Presentation of Findings Break
0950 - 0945	
0045 1100	Designing PQ Solutions for Critical Systems
0945 – 1100	End-User Specific Mitigation Plans • PQ Strategy for Substations • Emergency
	Power Systems • Coordination with Network Protection
1100 - 1215	Reporting & Communication of PQ Findings
	Structuring a Technical PQ Report • Data Visualization for Stakeholders •
1015 1020	Writing Executive Summaries • Regulatory and Compliance Documentation
1215 - 1230	Break
1230 - 1345	Power Quality Assessment & Certification
	<i>Self-Assessment Checklist</i> • <i>PQ Audit Templates</i> • <i>Certification Requirements</i> •
	Summary of Compliance Status
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
1400 1415	Course Topics that were Covered During the Course
1400 – 1415 1415 - 1430	POST-TEST
1400 – 1415 1415 – 1430 1430	

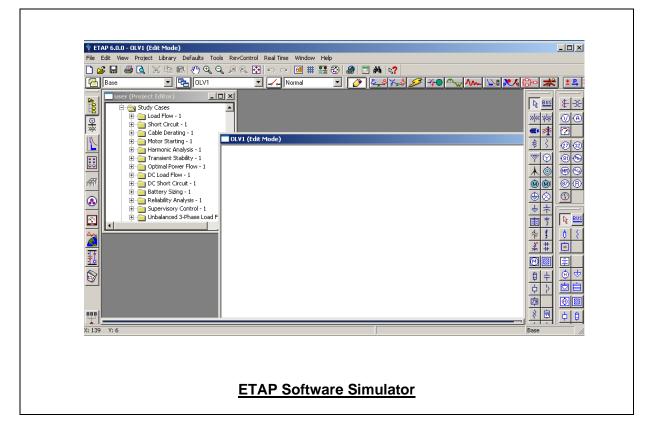


Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulator "Simutech Troubleshooting Electrical Circuits V4.1", Power World" and "ETAP software".







Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

EE1141- Page 10 of 10

B(•)H