

COURSE OVERVIEW TE0306 Advanced Water Chemistry

<u>Course Title</u> Advanced Water Chemistry

Course Date/Venues

Session 1: July 28-August 01, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE Session 2: November 24-28, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

TE0306

Course Description

<u>Course Duration/Credits</u> Five days/3.0 CEUs/30 PDHs

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Advanced Water Chemistry. It covers the key properties of water and the types of water contaminants and water composition and properties; the acid-base chemistry in water, chemical reactions in water treatment and water hardness and softening; the water quality parameters, coagulation and flocculation, disinfection chemistry, filtration and membrane principles technologies; the basic of ion exchange and applications in water softening; and the removal of specific ions and regeneration of ion exchange resins.

Further, the course will also discuss the principles of desalination technologies and chemical processes in reverse osmosis; the impact of desalination on water chemistry and brine disposal and environmental impact; the advanced chemical processes in water treatment. water quality analysis and spectroscopic techniques in water chemistry; the chromatographic techniques for water quality, electrochemical techniques and microbiological water testing; the water chemistry modeling and simulation; and the heavy metal contamination, nutrient pollution and eutrophication.

TE0306 - Page 1 of 9

TE0306-07-25|Rev.00|13 April 2025

During this interactive course, participants will learn the emerging contaminants in water, microplastics in water, radionuclides and radioactive water contaminants; the water quality in industrial effluents, water reuse and recycling and sustainable water treatment practices; the relationship between water use and energy consumption and the energy recovery in water treatment processes; the desalination and strategies for reducing energy consumption in water treatment; the effects of climate change on water resources, alterations in water chemistry due to climate factors and adaptation strategies for water management; the water quality management plans and monitoring and reporting requirements; and the risk management in water quality control.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an advanced knowledge on water chemistry
- Discuss the key properties of water, types of water contaminants and water composition and properties
- Describe acid-base chemistry in water, chemical reactions in water treatment and water hardness and softening
- Explain water quality parameters, coagulation and flocculation, disinfection chemistry and filtration and membrane technologies
- Discuss the basic principles of ion exchange and its applications in water softening, removal of specific ions and regeneration of ion exchange resins
- Explain the principles of desalination technologies, chemical processes in reverse osmosis, impact of desalination on water chemistry and brine disposal and environmental impact
- Carryout advanced chemical processes in water treatment, water quality analysis and spectroscopic techniques in water chemistry
- Employ chromatographic techniques for water quality, electrochemical techniques and microbiological water testing
- Illustrate water chemistry modeling and discuss heavy metal contamination, nutrient pollution and eutrophication
- Recognize the emerging contaminants in water, microplastics in water, radionuclides and radioactive water contaminants
- Employ water quality in industrial effluents, water reuse and recycling and sustainable water treatment practices
- Discuss the relationship between water use and energy consumption, energy recovery in water treatment processes, desalination and its energy demands and strategies for reducing energy consumption in water treatment
- Identify the effects of climate change on water resources, alterations in water chemistry due to climate factors and adaptation strategies for water management
- Implement water quality management plans, monitor and report requirements and apply risk management in water quality control

TE0306 - Page 2 of 9 TE0306-07-25|Rev.00|13 April 2025

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of advanced water chemistry for water treatment plant operators, power plant chemists and engineers, environmental engineers and technicians, laboratory analysts and chemists, process engineers, quality assurance/quality control (QA/QC) personnel, utility engineers, health, safety & environmental (HSE) officers, R&D and technical support staff, desalination plant engineers and other technical staff.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures 20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + VAT. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

TE0306 - Page 3 of 9

TE0306-07-25|Rev.00|13 April 2025

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• **BAC**

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

TE0306 - Page 4 of 9

TE0306-07-25|Rev.00|13 April 2025

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Paul Patsi, MSc, BSc, is a Senior Analytical Chemist and an International Expert in Water & Waste Water Treatment Technology with over 25 years of extensive Analytical Laboratory and Water & experience in Wastewater Treatment Engineering. His expertise covers Assessment, Microbiological Laboratory Quality Assurance, Analytical Chemistry, Statistical Analysis, Laboratory Safety, Equipment & Infrastructure

Management, Budgeting & Planning of Laboratory Consumables, Business Administration, Personnel Management, Laboratory Management, Chemical Analysis, Laboratory Auditing, Risk Assessment, Microbiological Analysis of Water & Waste Water, Waste Water Treatment Analysis, Water Chemistry, HACCP, ISO 22000, ISO 17025, ISO 9001, Good Manufacturing Practice (GMP), Good Hygiene Practice (GHP) and Good Laboratory Practice (GLP). He is also an expert in microbiological indoor air quality, water biology, food sampling and calibration. He is currently the Head of Industrial Analytical Laboratory of PINDOS wherein he is in-charge of the budgeting, auditing, consumables, suppliers, personnel management, equipment and infrastructure management along with waste water treatment and water/environmental legislation.

During his career life, Mr. Paul has held key positions such as the Head of Microbiology & Chemical Laboratory, Head of Quality Control, Technical Consultant, Research Projects Specialist, Scientific Consultant, Biologist-Scientific Expert and Biologist for multi-billion companies like the European Union, Help LTD, Lake Pamvotis Municipality Company, Hellenic Centre for Marine Research, Cargill and Nestle just to name a few.

Mr. Paul has a Master's degree in Food Science and Food Technology from the University of Ioannina (Greece) and a Bachelor's degree in Biology from the Aristotle University of Thessaloniki (Greece). He is a Certified Instructor/Trainer and a Member of the Society for Applied Microbiology, Society of Biological Scientist and the Global Coalition for Sustained Excellence in Food & Health Protection.

TE0306 - Page 5 of 9

<u>Course Program</u> The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Introduction to Water Chemistry
0830 - 0930	Definition of Water Chemistry • Key Properties of Water • Importance of Water
	Quality in Industry • Types of Water Contaminants
0930 - 0945	Break
	Water Composition & Properties
0945 - 1030	Chemical Structure of Water • pH & its Importance in Water Chemistry •
	Dissolved Gases in Water • Solubility & Chemical Equilibrium in Water
	Acid-Base Chemistry in Water
1030 - 1130	Concept of pH & pOH • Buffer Systems in Water • Acid-Base Reactions in
	Natural Waters • Methods for Measuring Ph & Alkalinity
	Chemical Reactions in Water Treatment
1130 - 1230	Precipitation & Coagulation • Oxidation & Reduction Reactions •
	Complexation Reactions • Hydrolysis in Water Chemistry
1230 - 1245	Break
	Water Hardness & Softening
1245 - 1335	Definition & Causes of Hardness • Types of Hardness (Temporary &
	Permanent) • Softening Methods (Lime-Soda, Ion Exchange) • Impact of Hard
	Water on Water Systems
1005 1100	Water Quality Parameters
1335 - 1420	Total Dissolved Solids (TDS) • Conductivity & its Relationship with Water
	<i>Quality</i> • <i>Turbidity</i> & <i>its Measurement</i> • <i>Biological Oxygen Demand</i> (BOD)
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
1420	Discussed Tomorrow
1430	Lunch & End of Day One

Dav 2

Duy Z	
0730 - 0830	Coagulation & Flocculation Coagulation Theory & Mechanism • Types of Coagulants & Flocculants • Factors Affecting Coagulation Efficiency • Monitoring & Optimizing Coagulation Processes
0830 - 0930	Disinfection Chemistry Disinfection Mechanisms (Chlorination, Ozonation) • Chemical Disinfectants & Their Reactions • Disinfection Byproducts (DBPs) • Regulatory Standards for Disinfection
0930 - 0945	Break
0945 – 1100	<i>Filtration & Membrane Technologies</i> <i>Principles of Filtration in Water Treatment</i> • <i>Chemical Additives in Filtration</i> • <i>Reverse Osmosis & Nanofiltration</i> • <i>Membrane Fouling & Cleaning</i>

TE0306 - Page 6 of 9

1100 - 1230	Ion Exchange in Water Treatment
	Basic Principles of Ion Exchange • Applications of Ion Exchange in Water
	Softening • Removal of Specific Ions (e.g., Nitrate, Fluoride) • Regeneration of
	Ion Exchange Resins
1230 – 1245	Break
1245 - 1330	Desalination & its Chemistry
	Principles of Desalination Technologies • Chemical Processes in Reverse
	Osmosis • Impact of Desalination on Water Chemistry • Brine Disposal &
	Environmental Impact
	Advanced Chemical Processes in Water Treatment
1330 - 1420	Ozonation & Advanced Oxidation Processes (AOP) • Chemical Treatment for
1550 - 1420	Heavy Metals Removal • Chemical Precipitation for Phosphate Removal •
	Removal of Emerging Contaminants
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Dav 3

Day 3	-
0730 - 0830	Water Quality Analysis: Overview
	Key Parameters to Monitor in Water Chemistry • Laboratory versus Field
0750 - 0050	Testing • Importance of Accuracy & Precision in Water Testing • Water
	Sample Preservation & Handling
	Spectroscopic Techniques in Water Chemistry
0830 - 0930	UV-Vis Spectroscopy for Water Analysis • Atomic Absorption Spectroscopy
0050 - 0550	(AAS) • Inductively Coupled Plasma Mass Spectrometry (ICP-MS) •
	Application of Spectroscopy in Heavy Metal Detection
0930 - 0945	Break
	Chromatographic Techniques for Water Quality
0945 – 1100	Gas Chromatography (GC) • High-Performance Liquid Chromatography
0943 - 1100	(HPLC) • Application in Organic Pollutant Detection • Sample Preparation for
	Chromatographic Analysis
	Electrochemical Techniques
1100 – 1230	pH & Conductivity Meters • Electrodes for Ion-Specific Analysis • Redox
1100 - 1250	Potential & ORP Measurement • Use of Electrochemical Sensors in Water
	Quality Monitoring
1230 - 1245	Break
	Microbiological Water Testing
1245 - 1330	Importance of Microbiological Testing in Water Quality • Detection of
1243 - 1550	Pathogenic Microorganisms • Culture-Based & Molecular Methods • Coliform
	Testing & its Importance
	Water Chemistry Modeling & Simulation
1330 - 1420	Modeling Chemical Reactions in Water Systems • Use of Computational Tools
1550 - 1420	for Water Chemistry • Predictive Models for Water Treatment Optimization •
	Case Studies in Modeling of Water Treatment Plants
1420 - 1430	Recap
	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

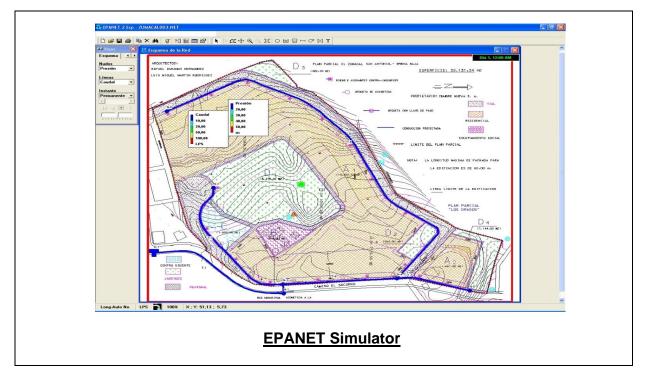
TE0306 - Page 7 of 9

Day 4	
	Heavy Metal Contamination
0730 - 0830	Sources of Heavy Metals in Water • Toxicity & Environmental Impact of
	Heavy Metals • Removal Methods (Precipitation, Adsorption) • Regulations &
	Standards for Heavy Metal Concentrations
	Nutrient Pollution & Eutrophication
0830 - 0930	Impact of Nutrients on Water Quality • Phosphorus & Nitrogen Removal
	Techniques • Chemical Additives for Nutrient Control • Eutrophication & its
0020 0045	Effect on Ecosystems
0930 - 0945	Break
	Emerging Contaminants in Water
0945 - 1100	Pharmaceuticals, Personal Care Products (PPCPs) • Endocrine Disrupting
	Chemicals (EDCs) • Industrial Chemicals in Water Systems • Treatment
	Methods for Emerging Contaminants
	Microplastics in Water
1100 – 1230	Sources & Impact of Microplastics • Detection & Quantification of Microplastics in Water • Removal & Filtration Techniques • Regulatory
	Framework for Microplastic Contamination
1230 - 1245	Break
1250 1245	Radionuclides & Radioactive Water Contaminants
	Occurrence & Sources of Radionuclides in Water • Radiological Standards for
1245 – 1330	Drinking Water • Treatment Methods for Radioactive Contaminants • Health
	Risks & Environmental Considerations
	Water Quality in Industrial Effluents
	Types of Industrial Contaminants • Chemical Treatment of Industrial
1330 - 1420	Wastewater • Effluent Regulations & Compliance • Case Studies in Industrial
	Wastewater Treatment
	Recap
1420 - 1430	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Dav 5

Day 5	
	Water Reuse & Recycling
0730 - 0830	Concepts of Water Reuse & Recycling • Chemical Treatments for Recycled
	Water • Applications in Agriculture, Industry & Municipal Use • Regulatory
	& Environmental Considerations
0830 - 0930	Sustainable Water Treatment Practices
	Green Chemistry in Water Treatment • Minimizing Chemical Usage in Water
	Treatment Plants • Sustainable Disinfection Methods • Case Studies in
	Sustainable Water Treatment
0930 - 0945	Break
	Water-Energy Nexus
0945 – 1100	Relationship Between Water Use & Energy Consumption • Energy Recovery in
0945 - 1100	Water Treatment Processes • Desalination & its Energy Demands • Strategies
	for Reducing Energy Consumption in Water Treatment
1100 – 1230	Climate Change & its Impact on Water Chemistry
	Effects of Climate Change on Water Resources • Alterations in Water
	Chemistry Due to Climate Factors • Adaptation Strategies for Water
	Management • Case Studies on Water Chemistry in a Changing Climate

TE0306 - Page 8 of 9



1230 - 1245	Break
1245 - 1315	Water Quality Management Systems
	Implementation of Water Quality Management Plans • Monitoring &
	Reporting Requirements • Risk Management in Water Quality Control • Role
	of Technology in Water Quality Management
1315 - 1345	Future Trends in Water Chemistry
	Innovations in Water Treatment Technologies \bullet Advances in Chemical \mathcal{E}
1515 - 1545	Biological Water Quality Monitoring • Role of Artificial Intelligence in Water
	Chemistry • Emerging Regulations & Standards in Water Chemistry
1345 - 1400	Course Conclusion
	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the latest revision of "EPANET" simulators.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

TE0306 - Page 9 of 9

