

COURSE OVERVIEW PE0640 Troubleshooting Process Operations

CEUS

(30 PDHs)

AWARD

<u>Course Title</u>

Troubleshooting Process Operations

Course Date/Venue

August 03- 07, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Course Reference PE0640

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

Production processes consist of many complex apparatuses involving both moving and static parts as well as interconnecting pipes, control mechanisms and electronics, mechanical and thermal stages, heat exchangers, waste and side product processing units, power ducts and many others.

Bringing such a complicated unit online and ensuring its continued productivity requires substantial skill at anticipating, detecting and solving acute problems. Failure to identify and resolve these problems quickly can lead to lost production, off-spec product, equipment loss, and even catastrophic accidents. Therefore, the ability to troubleshoot process operations is one of the most valuable skills operations personnel can possess.

Troubleshooting is the process used to diagnose the fault safely and efficiently, decide on corrective action and prevent the fault from reoccurring. Process engineering, especially troubleshooting, is different from most other branches of technology in another respect: It is not advancing very quickly.

The principles of distillation, hydraulics, phase separation, and heat transfer, as they apply to process applications, have been well known for quite some time. The challenge in troubleshooting consists of untangling the influence that human error, mechanical failure, and corrosion have on these well-known principles. The aspect of the job that makes it so difficult is that most process problems are initiated by human error – a never-ending source of surprise.

This course is designed to provide instruction in the different types of troubleshooting techniques, procedures, and methods used to solve process problems. Participants will use existing knowledge of equipment, systems, and instrumentation to understand the troubleshooting process operations of an entire unit in a facility. Participants study concepts related to troubleshooting commissioning, normal startup, normal operations, normal shutdown, turnarounds, and abnormal situations, as well as the Process team role in performing tasks associated with these concepts within an operating unit.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply systematic techniques in troubleshooting process operations and carryout successful troubleshooting activities
- Follow a structured technique for problem solving and troubleshooting process operation, using the guide-words: engage define explore plan do check
- Analyze the mental problem-solving process and demonstrate the use of the troubleshooter's worksheet
- Practice the rules-of-thumb techniques for trouble-shooting process equipment and enumerate the typical causes of problems with process equipment that covers an extensive range of process equipment
- Develop problem solving, data gathering & interpersonal skills and recognize the importance of these skills in troubleshooting process operations
- Practice the trouble-shooting skills by working in small workshops on a wide range of case studies drawn from the process industries

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course covers systematic techniques in troubleshooting process operations and carrying out successful troubleshooting activities. Process engineers, maintenance engineers, maintenance staff, plant engineers, team leaders, section heads, production engineers, operations engineers and field engineers will definitely benefit from the engineering problem solving approach of the course. Shift foremen, plant supervisors and other technical staff will gain an excellent knowledge from the practical aspects of this course.

PE0640 - Page 2 of 7 PE0640-08-25|Rev.637|09 July 2025

Pre-Requisite: Participants must have a good understanding on the chemical engineering basic principles of operations and process equipment.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

<u>The International Accreditors for Continuing Education and Training</u> (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

PE0640 - Page 3 of 7 PE0640-08-25|Rev.637|09 July 2025

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. John Petrus, PhD, MSc, BSc, is a Senior Process Engineer with over 30 years of onshore & offshore experience within the Oil & Gas, Refinery and Petroleum industries. His wide experience covers in the areas of De-Sulfurization Technology, Process Troubleshooting, Distillation Towers, Fundamentals of Distillation for Engineers, Distillation Operation and Troubleshooting, Advanced Distillation Troubleshooting, Distillation Technology, Vacuum Distillation, Distillation Column Operation & Control, Oil Movement Storage & Troubleshooting, Process Equipment Design, Applied Process Engineering Elements, Process Plant Optimization, Revamping & Debottlenecking, Process Plant Troubleshooting & Engineering Problem Solving, Process Plant Monitoring, Catalyst Selection & Production Optimization,

Operations Abnormalities & Plant Upset, Process Plant Start-up & Commissioning, Clean Fuel Technology & Standards, Flare, Blowdown & Pressure Relief Systems, Oil & Gas Field Commissioning Techniques, Pressure Vessel Operation, Gas Processing, Chemical Engineering, Process Reactors Start-Up & Shutdown, Gasoline Blending for Refineries, Urea Manufacturing Process Technology, Continuous Catalytic Reformer (CCR), Advanced Operational & Troubleshooting Skills, Principles of Operations Planning, Rotating Equipment Maintenance & Troubleshooting. Further he is also well versed in Rotating Machinery Principles & Applications, Rotating Equipment Selection, Operation, Maintenance, Inspection & Troubleshooting, Rotating Machine/Equipment in Industry, Control Valves & Actuators, PSV Maintenance & Testing, Pump Selection, Installation, Performance & Control, Screw Compressor Theory and Troubleshooting, Reliability-Centered Maintenance (RCM), Preventive & Predictive Maintenance, Spare Parts Planning & Inventory Management, Computerized Maintenance Management Systems (CMMS), Process Plant Shutdown & Turnaround, Maintenance Optimization & Best Practices, Reliability Centered Maintenance Principles & Application, Efficient Shutdowns, Turnaround & Outages, Effective Reliability Maintenance & Superior Maintenance Strategies, Integrity & Asset Management, Total Plant Reliability Maintenance, Vibration Measurement, Advanced Analytics in Oil & Gas, Business Intelligence Data Analytics, Audit Analytics & Computer-Assisted Audit Techniques (CAATs), Basic Database Concepts & Data Formats, Data Analysis Cycle & Best Practices, Data Importing & Integrity Verification, Advanced Analytics Tools in Auditing, Leveraging AI & Machine Learning in Audits, Data Mining Techniques for Auditors, Data Analytics for Managerial Decision Making, Business Process Analysis, Mapping & Modeling, Research Methods & Analysis, Statistical Data Needs Analysis, Oil & Gas Industry Business Environment & Competitive Intelligence Gathering & Analysis, Petroleum Economics & Risk Analysis, Certified Data Analysis, Risk Management & SWIFT Analysis, Best Practices Management System (BPMS), GIS System Management, Database Management, Strategic Planning, Best Practices and Workflow, Quality Management, Project Management and Risk Assessment & Uncertainty Evaluation. Further, he is also well-versed in seismic interpretation, mapping & reservoir modelling tools like Petrel software, LandMark, Seisworks, Geoframe, Zmap and has extensive knowledge in MSDos, Unix, AutoCAD, MAP, Overlay, Quicksurf, 3DStudio, Esri ArcGIS, Visual Lisp, Fortran-77 and Clipper. Moreover, he is a world expert in analysis and modelling of fractured prospects and reservoirs and a specialist and developer of fracture modelling software tools such as FPDM, FMX and DMX Protocols.

During his career life, Dr. Petrus held significant positions and dedication as the **Executive Director**, **Senior Geoscience Advisor**, **Exploration Manager**, **Project Manager**, **Manager**, **Process Engineer**, **Mechanical Engineer**, **Maintenance Engineer**, **Chief Geologist**, **Chief of Exploration**, **Chief of Geoscience**, **Senior Geosciences Engineer**, **Senior Explorationist**, **Senior Geologist**, **Geologist**, **Senior Geoscientist**, **Geomodeller**, **Geoscientist**, **CPR Editor**, **Resources Auditor**, **Project Leader**, **Technical Leader**, **Team Leader**, **Scientific Researcher** and **Senior Instructor/Trainer** from various international companies and universities such as the Dragon Oil Holding Plc., ENOC, MENA, ENI Group of Companies, Ocre Geoscience Services (OGS), Burren RPL, Ministry of Oil-Iraq, Eni Corporate University, Standford University, European Universities, European Research Institutes, NorskHydro Oil Company, Oil E&P Companies, just to name a few.

Dr. Petrus has a **PhD** in **Geology** and **Tectonophysics** and **Master** and **Bachelor** degrees in **Earth Sciences** from the **Utrecht University**, **The Netherlands**. Further, he is a **Certified Instructor/Trainer**, a **Certified Trainer/Assessor/Internal Verifier** by the **Institute of Leadership & Management (ILM)**, a Secretary and Treasurer of Board of Directors of Multicultural Centre, Association Steunfonds SSH/SSR and Founding Member of Sfera Association. He has further published several scientific publications, journals, research papers and books and delivered numerous trainings, workshops, courses, seminars and conferences internationally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 03 rd of August 2025
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	What is Troubleshooting?
0830 - 0930	Characteristics of a Trouble-Shooting Problem • Characteristics of the Process Used
	to Solve Trouble-Shooting Problems
0930 - 0945	Break
0945 – 1100	Self-Assessment & Case Studies
	The Mental Problem-Solving Process
1100 – 1230	Problem Solving • Troubleshooting • Overall Summary of Major Skills & a
	<i>Worksheet</i> • <i>Example Use of the Trouble-Shooter's Worksheet</i>
1230 – 1245	Break
1245 – 1420	Video
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2: Monday, 04th of August 2025

0730 - 0930	Rules of Thumb for Troubleshooting
	Overall • Transportation Problems • Energy Exchange • Homogenous
	Separation • Heterogenous Separations • Reactor Problems • Mixing Problems
	• Size-Decrease Problems • Size Enlargement • Vessels, Bins, Hoppers &
	Storage Tanks • "Systems" Thinking • Health, Fire & Stability
0930 - 0945	Break

PE0640 - Page 5 of 7

0945 - 1100	Case Study Observation
	Problem Solving Skills
1100 – 1230	Developing Awareness of the Problem-Solving Process • Strategies • Exploring the
	"Context": What is the Real Problem?
1230 – 1245	Break
1245 – 1420	Video
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3:	Tuesday, 05 th of August 2025
0730 - 0930	Problem Solving Skills (cont'd)
	Creativity • Self-Assessment
0930 - 0945	Break
0945 - 1100	Data Gathering Skills
	How to Select Valid Diagnostic Actions • Consistency: Definitions, Cause-Effect &
	Fundamentals • Classification • Recognizing Patterns • Reasoning
1100 - 1230	Interpersonal Skills
	Interpersonal Skills • Factors that Affect Personal Performance • The
	Environment
1230 – 1245	Break
1245 – 1420	Video
1420 – 1430	Recap
1430	Lunch & End of Day Three

Day 4:	Wednesday, 06 th of August 2025
0730 - 0930	Case Studies - Working in Groups
	<i>Case Study chosen from a list by the class</i>
0930 - 0945	Break
0945 - 1145	Case Studies - Working in Groups (cont'd)
	<i>Case Study Chosen from a List by the Class (cont'd)</i>
1145 – 1230	Case Studies - Working in Groups (cont'd)
	<i>Case Study Chosen from a List by the Class (cont'd)</i>
1230 - 1245	Break
1245 – 1420	Video
1420 – 1430	Recap
1430	Lunch & End of Day Four

Day 5:	Thursday, 07 th of August 2025
0730 - 0930	Case Studies - Working in Groups (cont'd)
	<i>Case Study Chosen from a List by the Class (cont'd)</i>
0930 - 0945	Break
0945 - 1145	Case Studies - Working in Groups (cont'd)
	<i>Case Study Chosen from a List by the Class (cont'd)</i>
1145 – 1230	Case Studies - Working in Groups (cont'd)
	<i>Case Study Chosen from a List by the Class (cont'd)</i>
1230 - 1245	Break
1245 - 1345	Case Studies - Working in Groups (cont'd)
	<i>Case Study Chosen from a List by the Class (cont'd)</i>

PE0640 - Page 6 of 7

1345 - 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

- The Case of the Cycling Column
- The Sulfuric Acid Pump Problem
- The Case of the Reluctant Crystallizer
- The Lousy Control System
- The Case of the Flashy Flare
- The Drooping Temperatures

- The Case of the Platformer Fires
- The Case of the Utility Dryer
- The Lazy Twin
- The Case of the Dirty Vacuum Gas Oil
- The Case of the Delinquent Exchangers
- The Boiler Feed Heater

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

PE0640 - Page 7 of 7

