

COURSE OVERVIEW FE0096 Welding & Fabrication, Material Science & Corrosion

Course Title

Welding & Fabrication, Material Science & Corrosion

Course Date/Venue

November 24-28, 2024/Fujairah Meeting Room-Day 1, Zafran Meeting Room-Day 2-5, The Tower Plaza Hotel, Dubai, UAE

Course Reference

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Welding & Fabrication, Material Science & Corrosion. It covers the different welding methods (MIG, TIG, Arc welding, etc.); and their applications in petrochemical settings; the common welding joints (butt, Iap, corner, edge, and tee joints); and their uses in pipeline and structural fabrication; the fabrication techniques specific to heat exchangers, pressure vessels, and piping systems; the criteria for selecting materials based on petrochemical industry requirements and the stress and corrosion resistance; the influence of welding on the microstructure of metals, heat-affected zones (HAZ); and the properties of welded joints.

Further, the course will also discuss the ASME, AWS, and API standards governing welding practices and quality control in the petrochemical industry; the welding in high-pressure, high-temperature environments, and welding defects including causes and prevention; the NDT methods covering radiographic testing, ultrasonic testing, and magnetic particle inspection for quality control; the PWHT and its importance in reducing residual stresses and improving the mechanical properties of welds; the weld qualification and procedure specifications and identify the common fabrication challenges covering thermal expansion, vibration, and material selection; the structure of materials (metals, alloys, polymers, and composites) and their properties.

FE0096 - Page 1 of 9

FE0096-11-24|Rev.01|07 November 2024

During this interactive course, participants will learn the stress-strain relationships, hardness, toughness, fatigue, and creep in the context of petrochemical applications; the role of stainless steel, carbon steel, specialty alloys in resisting corrosion and hightemperature environments; the heat treatment of metals, failure analysis of metals and corrosion-resistant materials; the corrosion types like the uniform corrosion, galvanic corrosion, pitting, and stress corrosion cracking; the electrochemical reactions and corrosion, corrosion in petrochemical processes, corrosion prevention methods, inspection techniques for corrosion, corrosion standards and codes; the impact of welding on corrosion resistance and the role of weld chemistry in preventing corrosion; the corrosion control, and the life cycle assessment of materials and welds; the comprehensive corrosion management plan including monitoring, inspection and mitigation practices.

Course Objectives

Upon successful completion of this course, each participant will be able to:-

- Apply and gain a comprehensive knowledge on welding and fabrication, material science and corrosion
- Discuss the different welding methods (MIG, TIG, Arc welding, etc.) and their applications in petrochemical settings
- Review the common welding joints (butt, lap, corner, edge, and tee joints) as well as their uses in pipeline and structural fabrication
- Discuss the fabrication techniques specific to heat exchangers, pressure vessels, and piping systems
- Identify the criteria for selecting materials based on petrochemical industry requirements including stress and corrosion resistance
- Explain the influence of welding on the microstructure of metals, heat-affected zones (HAZ), as well as the properties of welded joints
- Review ASME, AWS, and API standards governing welding practices including quality control in the petrochemical industry
- Describe welding in high-pressure, high-temperature environments, and welding defects including causes and prevention
- Employ NDT methods covering radiographic testing, ultrasonic testing, and magnetic particle inspection for quality control
- Explain the PWHT and its importance in reducing residual stresses and improving the mechanical properties of welds
- Develop weld qualification and procedure specifications and identify the common fabrication challenges covering thermal expansion, vibration, and material selection
- Identify the structure of materials (metals, alloys, polymers, and composites) and their properties
- Explore the stress-strain relationships, hardness, toughness, fatigue, and creep in the context of petrochemical applications

FE0096 - Page 2 of 9

- Discuss the role of stainless steel, carbon steel, specialty alloys in resisting corrosion and high-temperature environments
- Recognize the heat treatment of metals, failure analysis of metals and corrosionresistant materials
- Identify the corrosion types like the uniform corrosion, galvanic corrosion, pitting, and stress corrosion cracking
- Determine the electrochemical reactions and corrosion, corrosion in petrochemical processes, corrosion prevention methods, inspection techniques for corrosion, corrosion standards and codes
- Discuss the impact of welding on corrosion resistance and the role of weld chemistry in preventing corrosion
- Design corrosion control, and illustrate the life cycle assessment of materials and welds
- Develop the comprehensive corrosion management plan including monitoring, inspection and mitigation practices

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of welding and fabrication, material science and corrosion for welders and fabricators, materials engineers, corrosion engineers, quality control inspectors and other technical staff.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- Simulators (Hardware & Software) & Videos 20%

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

FE0096 - Page 3 of 9

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

• *** BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

FE0096 - Page 4 of 9

FE0096-11-24|Rev.01|07 November 2024

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. George Poulos, MBA, MSc, BSc, CEng, is a Senior Corrosion & Welding Engineer with over 45 years of extensive experience within the Oil & Gas, Petrochemical, Refinery, Construction, Aircraft & Shipbuilding Industry. His wide experiences covers in the areas of Metallurgy, Corrosion & Prevention of Failures, Material Selection & Properties, Metallurgy Techniques, Metallurgical Failure Analysis & Prevention, Oilfield Corrosion Monitoring & Control, Corrosion Fabrication & Inspection, Fabrication & Repair, Corrosion

Control, Corrosion Inhibition, Prevention. **Corrosion** Engineering, Corrosion **Corrosion** Management in Process Operations, **Corrosion** & Prevention of Failures, Material Selection, Cathodic Protection Systems, Welding & Cutting, Welding Inspection, Welding & Machine Techniques, TIG & Arc Welding, Shielded Metal Arc Welding, Gas Tungsten & Gas Metal Arc Welding, Welding Procedure Specifications & Qualifications, Aluminium Welding, Hot & Cold Tapping Techniques, Hot Work-Safety, SMAW, GTAW, Welding Techniques, Pipeline Welding Practices, Welding Engineering, Welding Fatigue & Fracture Mechanics, Welding Inspection Technology, Welding Safety, Welding Defects Analysis, Welding Technology, Welding Problems, Welding & Non Destructive Testing, Further, he is also well-versed in Hot Rolling Process, Hot Strip Mill, Mill Operations, Roll Mill, Steel Making Process, Steel Manufacturing, Electric Arc Furnace (EAF), Steel Forging, Steel Manufacturing & Process Troubleshooting, Slit Rolling, Carbon Steel Pipe Wall Thickness & Grade Selection, Ferro-Alloys, Steel Metallurgy, Steel Structure Welding, Steelmaking Slag, Steel Making Application, Heat Treatment & Prevention Techniques, Corrosion Fabrication & Inspection and Post Weld Heat Treatment.

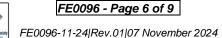
During his career life, Mr. Poulos has gained his practical and field experience through his various significant positions and dedication as the **Chief Executive**, **Head of Technical Studies**, **Manager**, **Senior Consultant**, **Lead Welding Engineer**, **Senior Welding Engineer**, **Design Engineer**, **Sales Engineer**, **Author**, **Welding Instructor**, **Visiting Lecturer** and **Technical Proposal Research Evaluator** from various international companies such as Greek Welding Institute, Hellenic Quality Forum and International Construction Companies such as Shipbuilding, Aircraft Industry and Oil and Gas Industry.

Mr. Poulos is a **Registered Chartered Engineer** and has a **Master's** degree in **Naval Architecture**, a **Bachelor's** degree in **Welding Engineering** and a Master of Business Administration (**MBA**) from the **Sunderland University**, **Aston University** and **Open University**, **UK**, respectively. Further, he is a **Certified Trainer/Instructor**, an active Member of Chartered Quality Institute (**CQI**), The British Welding Institute (**TWI**), The Royal Institution of Naval Architects (**RINA**) and American Welding Society (**AWS**), a Registered **EWF/IW** (European Welding Federation-International Welding Institute W/E) and an **IRCA** Accredited External Quality Systems Auditor through BVQI. He is an **Author** of Technical Book dealing with Protection/Health/Safety in the Welding/Cutting domain and delivered various trainings, seminars, conferences, workshops and courses globally.

FE0096 - Page 5 of 9

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.


Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 24 th of November 2024
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Introduction to Welding Processes
0830 - 0930	Overview of Different Welding Methods (MIG, TIG, Arc Welding, Etc.) &
	Their Applications in Petrochemical Settings
0930 - 0945	Break
	Types of Welding Joints
0945 - 1030	Review of Common Welding Joints (Butt, Lap, Corner, Edge, & Tee Joints) &
	Their Use in Pipeline & Structural Fabrication
	Fabrication Methods for Petrochemical Equipment
1030 - 1130	Discussion of Fabrication Techniques Specific to Heat Exchangers, Pressure
	Vessels, & Piping Systems
	Material Selection for Welding
1130 – 1230	Criteria for Selecting Materials Based on Petrochemical Industry
	Requirements, Including Stress & Corrosion Resistance
1230 – 1245	Break
	Welding Metallurgy
1245 - 1330	Influence of Welding on the Microstructure of Metals, Heat-Affected Zones
	(HAZ), & the Properties of Welded Joints
	Welding Codes & Standards
1330 - 1420	An Introduction to ASME, AWS, & API Standards Governing Welding
1400 1400	Practices & Quality Control in the Petrochemical Industry
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2:	Monday, 25 th of November 2024
	Welding in High-Pressure & High-Temperature Environments
0730 – 0900	Techniques for Welding Materials Used in High-Pressure Systems &
	Dealing with Temperature Variations in Petrochemical Applications
0900 - 0915	Break
	Welding Defects: Causes & Prevention
0945 - 1030	Identification of Common Defects Like Porosity, Cracking, & Incomplete
	Fusion, with Methods to Prevent Them
	Non-Destructive Testing (NDT) of Welds
1030 - 1130	Introduction to NDT Methods Such as Radiographic Testing, Ultrasonic
	Testing, & Magnetic Particle Inspection for Quality Control
	Post-Weld Heat Treatment (PWHT)
1130 – 1230	Explanation of PWHT & Its Importance in Reducing Residual Stresses &
	Improving the Mechanical Properties of Welds

1230 – 1245	Break
1245 - 1330	Weld Qualification & Procedure SpecificationsRequirements for Welding Procedure Qualification, Welder PerformanceQualification, & Documentation
1330 - 1420	Fabrication Challenges in the Petrochemical IndustryCase Studies on Common Fabrication Challenges such as ThermalExpansion, Vibration, & Material Selection
1420 - 430	Recap
1430	Lunch & End of Day Two

Day 3:	<i>Tuesday, 26th of November 2024</i>
	Fundamentals of Material Science
0730 – 0900	Introduction to the Structure of Materials (Metals, Alloys, Polymers, &
	Composites) & Their Properties
0900 - 0915	Break
	Mechanical Properties of Metals
0945 – 1030	Exploration of Stress-Strain Relationships, Hardness, Toughness, Fatigue, &
	Creep in the Context of Petrochemical Applications
	Alloys Used in the Petrochemical Industry
1030 – 1130	The Role of Stainless Steel, Carbon Steel, & Specialty Alloys in Resisting
	Corrosion & High-Temperature Environments
	Heat Treatment of Metals
1130 – 1230	Overview of Annealing, Quenching, Tempering, & Hardening Processes to
	Alter Material Properties for Specific Petrochemical Applications
1230 - 1245	Break
	Failure Analysis of Metals
1245 - 1330	Techniques to Investigate & Analyze Material Failures, Focusing on
	Fracture Mechanics, Wear, & Fatigue
1330 - 1420	Corrosion-Resistant Materials
	Materials Designed to Resist Corrosion, Including Duplex Stainless Steels,
	Nickel Alloys, & Corrosion-Resistant Coatings
1420 - 430	Recap
1430	Lunch & End of Day Three

Day 4:	Wednesday, 27 th of November 2024
-	Basics of Corrosion Mechanisms
0730 – 0900	Explanation of Corrosion Types such as Uniform Corrosion, Galvanic
	Corrosion, Pitting, & Stress Corrosion Cracking
0900 - 0915	Break
	Electrochemical Reactions & Corrosion
0945 - 1030	The Role of Electrochemical Reactions in Corrosion & Their Impact on
	Petrochemical Structures
	Corrosion in Petrochemical Processes
1030 - 1130	Factors Contributing to Corrosion in Refining, Storage, & Transportation of
	Petrochemical Products
	Corrosion Prevention Methods
1130 – 1230	Review of Coatings, Cathodic Protection, & Material Selection as Methods of
	Corrosion Prevention
1230 - 1245	Break

*** BAC

	Inspection Techniques for Corrosion
1245 - 1330	Methods of Inspecting for Corrosion Damage, Including Ultrasonic Testing,
	Eddy Current Testing, & Corrosion Probes
	Corrosion Standards & Codes
1330 - 1420	Overview of International Standards Like NACE, ISO, & API for Corrosion
	Control in Petrochemical Environments
1420 - 430	Recap
1430	Lunch & End of Day Four

Day 5:	Thursday, 28 th of November 2024
	Welding & Corrosion Interaction
0730 - 0830	Exploring the Impact of Welding on Corrosion Resistance & the Role of Weld
	Chemistry in Preventing Corrosion
	Designing for Corrosion Control
0830 - 0930	Strategies for Designing Welded Structures that Minimize Corrosion Risks in
	Petrochemical Plants
0930 - 0945	Break
	Life Cycle Assessment of Materials & Welds
0945 - 1030	Techniques to Assess the Long-Term Performance & Cost-Effectiveness of
	Materials & Welds, Including Corrosion Management
	Corrosion Management Strategies
1030 - 1230	Developing a Comprehensive Corrosion Management Plan, including
	Monitoring, Inspection, & Mitigation Practices
1230 - 1245	Break
	Case Studies in Failure & Success
1245 - 1345	Analysis of Real-World Examples of Material Failures & Successes in
	Petrochemical Welding, Fabrication, & Corrosion Control
1345 – 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

FE0096 - Page 8 of 9

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

FE0096 - Page 9 of 9

ACCREDITED ACCET PROVIDER

FE0096-11-24|Rev.01|07 November 2024