

COURSE OVERVIEW EE1101 Modern Power Plant

Course Title Modern Power Plant

Course Date/Venue

Session 1: July 07-11, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE Session 2: October 20-24, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

EE1101

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Modern Power Plant. It covers the types of power plants, key components of boilers, turbines, generators, power generation methods and power plant cycles and efficiencies; the basic thermodynamics in power plants, types of modern power plants and modern power plant design principles; the power plant safety standards and regulations, boiler and combustion systems, turbines, generators, heat recovery and steam generation; the cooling towers and their functions, types of cooling systems, water usage and environmental impacts; the power distribution and transmission basics. synchronization with the electrical grid, protection and control systems; and the smart grid technologies for modern power plants.

Further, the course will also the supervisory control and data acquisition (SCADA) and distributed control systems (DCS); the automation in plant monitoring optimization. real-time data and analvsis and decision-making; the preventive and predictive maintenance, power plant troubleshooting techniques, reliability engineering in power plants and condition monitoring tools and techniques; and the plant shutdown and turnaround management including risk assessment and management.

EE1101 - Page 1 of 10

During this interactive course, participants will learn the environmental impact of power plants and carbon capture and storage (CCS) technologies; the CCS principles and processes, integration of CCS in modern power plants, environmental benefits, challenges of CCS and future of CCS in reducing carbon footprints; the renewable energy integration, water management and conservation, sustainable design and green technologies; the emerging technologies in power generation, digitalization and the internet of things (IoT); the artificial intelligence and machine learning in power plants, smart grid and energy storage solutions; and the decentralized power generation.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a comprehensive knowledge on modern power plant
- Identify the types of power plants, key components of boilers, turbines, generators, power generation methods and power plant cycles and efficiencies
- Discuss the historical development of power plants, basic thermodynamics in power plants, types of modern power plants and modern power plant design principles
- Review power plant safety standards and regulations and recognize boiler and combustion systems, turbines, generators, heat recovery and steam generation
- Identify cooling towers and their functions, types of cooling systems, water usage and environmental impacts
- Discuss power distribution and transmission basics, synchronization with the electrical grid, protection and control systems and smart grid technologies for modern power plants
- Describe supervisory control and data acquisition (SCADA) and distributed control systems (DCS) as well as apply automation in plant monitoring and optimization, real-time data analysis and decision-making
- Employ preventive and predictive maintenance, power plant troubleshooting techniques, reliability engineering in power plants and condition monitoring tools and techniques
- Carryout plant shutdown and turnaround management including risk assessment and management
- Discuss environmental impact of power plants and carbon capture and storage (CCS) technologies
- Apply techniques for improving energy efficiency in power plants, heat recovery and waste heat utilization, energy audits and performance benchmarking and sustainable practices and energy conservation technologies
- Carryout renewable energy integration, water management and conservation, sustainable design and green technologies
- Discuss the emerging technologies in power generation, digitalization and the internet of things (IoT)
- Determine artificial intelligence and machine learning in power plants, smart grid and energy storage solutions and decentralized power generation

EE1101 - Page 2 of 10

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of modern power plant for electrical engineers, mechanical engineers, energy engineers, plant operators, technicians, supervisors, maintenance and reliability engineers, project managers, project engineers, health, safety, environment (HSE) professionals and other technical staff.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

EE1101 - Page 3 of 10

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education set by BAC.

The International Accreditors for Continuing Education and Training
(IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

EE1101 - Page 4 of 10

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Ahmed El-Sayed, PhD, MSc, BSc, is a **Senior Electromechanical Engineer** with over **30 years** of extensive experience in the **Power**, **Petroleum**, **Petrochemical** and **Utilities**. He specializes in HV/LV Equipment, High Voltage Electrical Safety, LV & HV Electrical System, HV Equipments Inspection & Maintenance, HV Switchgear Operation & Maintenance, LV Distribution Switchgear & Equipment, HV Switchgear Maintenance, HV/LV Electrical Authorisation, Hazardous Area Classification, Power Quality, Disturbance

Analysis, Blackout, Power Network, Power Distribution, Power Systems Control, Power Systems Security, Power Electronics, ETAP, Electrical Substations, Tariff Design & Structure Analysis, Engineering Drawings, Codes & Standards, P&ID Reading, Interpretation & Developing, PLC, SCADA, DCS, Process Control, Instrumentation, Automation, Power Generation, Process Control Instrumentation, SIS, SIL, ESD, Alarm Management Systems, Fieldbus Systems and Fiber Optics as well as the service pricing of these. Further, he is also well versed in Pumps, Valves, Boilers, Pressure Vessels, Heat Recovery Steam Generators (HRSG), Bearings, Compressors, Motors, Turbines, Actuators, Carbon Footprint, Energy Efficiency, Power Plant Performance & Efficiency, P&ID, Engineering Drawing, Codes & Standards and Hydraulic Systems He is currently the Systems Control Manager of Siemens where he is in-charge of Security & Control of Power Transmission Distribution & High Voltage Systems and he further takes part in the Load Records Evaluation & Transmission Services Pricing.

During his career life, Dr. Ahmed has been actively involved in different Power System Activities including Roles in Power System Planning, Analysis, Engineering, **HV Substation** Design, Electrical Service Pricing, Evaluations & Tariffs, Project Management and also in Teaching and Consulting. His vast industrial experience was honed greatly when he joined many International and National Companies such as **Siemens**, **Electricity Authority** and **ACETO** industries where he focused more on dealing with Technology Transfer, System Integration Process and Improving Localization. He was further greatly involved in manufacturing some of **Power System** and **Control & Instrumentation Components** such as Series of Digital Protection **Relays**, MV **VFD**, **PLC** and **SCADA** System with intelligent features.

Dr. Ahmed is well-versed in different electrical and instrumentation fields like Load Management Concepts, **PLC** Programming, Installation, Operation and Troubleshooting, **AC Drives** Theory, Application and Troubleshooting, Industrial Power Systems Analysis, AC & DC **Motors**, Electric Motor **Protection**, **DCS SCADA**, **Control** and Maintenance Techniques, Industrial Intelligent Control System, Power Quality Standards, Power Generators and Voltage Regulators, Circuit Breaker and Switchgear Application and Testing Techniques, **Transformer** and **Switchgear** Application, Grounding for Industrial and Commercial Assets, Power Quality and Harmonics, Protective Relays (O/C Protection, Line Differential, Bus Bar Protection and Breaker Failure Relay) and Project Management Basics (PMB).

Dr. Ahmed has **PhD**, **Master's & Bachelor's** degree in **Electrical** and **Instrumentation Engineering** from the **University of Wisconsin Madison**, **USA**. Further, he has numerous papers published internationally in the areas of Power Quality, Superconductive Magnetic Energy Storage, SMES role in Power Systems, Power System **Blackout** Analysis, and Intelligent Load Shedding Techniques for preventing Power System Blackouts, HV **Substation Automation** and Power System Stability.

EE1101 - Page 5 of 10 EE1101-07-25/Rev.00/20 March 2025

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Overview of Power Plant Systems Definition and Types of Power Plants • Key Components: Boilers, Turbines, Generators • Power Generation Methods: Thermal, Hydro, Nuclear and Renewables • Overview of Power Plant Cycles and Efficiencies
0930 - 0945	Break
0945 – 1030	<i>Historical Development of Power Plants</i> <i>Early Power Generation Technologies</i> • <i>Evolution of Power Plant Design and</i> <i>Technology</i> • <i>Key Innovations in Power Generation</i> • <i>Challenges in</i> <i>Transitioning from Traditional to Modern Plants</i>
1030 - 1130	Basic Thermodynamics in Power Plants Laws of Thermodynamics and their Application • Heat and Energy Conversion Processes • Efficiency and Performance Measures • Thermodynamic Cycles in Power Plants (Rankine, Brayton)
1130 – 1215	Types of Modern Power Plants Combined Cycle Power Plants (CCPP) • Gas Turbine Power Plants • Cogeneration and CHP (Combined Heat and Power) • Renewable Energy Power Plants (Solar, Wind)
1215 – 1230	Break
1230 - 1330	Modern Power Plant Design Principles Design Criteria for Efficiency and Sustainability • Role of Automation and Control Systems • Material Selection and Plant Life Cycle Considerations • Designing for Environmental Compliance
1330 - 1420	Power Plant Safety Standards & Regulations Industry Standards (e.g., ASME, IEC, IEEE) • Safety Regulations and Compliance • Health and Safety Risks in Power Plant Operation • Safety Systems and Protocols
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

0730 - 0830	Boiler & Combustion Systems Types of Boilers Used in Power Plants • Combustion Processes and Efficiency • Fuel Types and their Impact on Design • Emissions Control and Reduction Technologies
0830 - 0930	Turbines & GeneratorsTypes of Turbines: Steam, Gas and Water Turbines • Generator Operation andElectrical Output • Matching Turbine Design to Plant Requirements •Operational Challenges in Turbines
0930 - 0945	Break

EE1101 - Page 6 of 10

0945 - 1100	Heat Recovery & Steam Generation
	Heat Recovery Steam Generators (HRSG) • Boiler Feed Water Treatment •
	Steam Generation and Temperature Control • Superheating and Reheating
	Techniques
1100 1215	Cooling Systems in Power Plants
	Cooling Towers and their Functions • Types of Cooling Systems: Once-
1100 - 1215	through, Recirculating • Water Usage and Environmental Impacts • Cooling
	System Maintenance and Challenges
1215 – 1230	Break
	Electrical Systems & Grid Integration
1000 1000	Power Distribution and Transmission Basics • Synchronization with the
1230 - 1330	Electrical Grid • Protection and Control Systems • Smart Grid Technologies for
	Modern Power Plants
	Automation & Control Systems
1220 1420	Supervisory Control and Data Acquisition (SCADA) • Distributed Control
1330 - 1420	Systems (DCS) • Automation in Plant Monitoring and Optimization • Real-
	Time Data Analysis and Decision-Making
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

0730 – 0830	Preventive & Predictive Maintenance Importance of Routine Inspections and Diagnostics • Predictive Maintenance Technologies (Vibration, Thermography) • Condition Monitoring Techniques • Scheduling and Tracking Maintenance Activities
0830 - 0930	Power Plant Troubleshooting Techniques Root Cause Analysis in Power Plants • Identifying and Resolving Mechanical Failures • Troubleshooting Electrical Issues in Power Generation • Case Studies of Common Power Plant Faults
0930 - 0945	Break
0945 – 1100	Reliability Engineering in Power Plants Key Performance Indicators (KPIs) for Reliability • Failure Modes and Effects Analysis (FMEA) • Reliability-Centered Maintenance (RCM) • Improving Plant Uptime and Reducing Downtime
1100 – 1215	Condition Monitoring Tools & Techniques Vibration Analysis and Thermography • Ultrasound Testing and Acoustic Emission Analysis • Performance Monitoring of Turbines and Boilers • Remote Sensing and Diagnostic Technologies
1215 – 1230	Break
1230 - 1330	Plant Shutdown & Turnaround ManagementPlanning and Executing Safe Plant Shutdowns • Inspection, Repair, andOverhaul During Shutdowns • Managing Critical Equipment and Spare Parts• Health and Safety Considerations During Turnarounds

EE1101 - Page 7 of 10

1330 - 1420	Risk Assessment & Management
	Identifying Hazards and Risks in Plant Operation • Quantitative and
	Qualitative Risk Assessment Methods • Risk Mitigation Strategies •
	Emergency Response Planning and Execution
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

Day 4	
0730 - 0830	Environmental Impact of Power Plants
	Air, Water and Soil Pollution from Power Plants • Waste Management: Ash,
0700 0000	Sulfur, CO ₂ and NOx • Environmental Regulations and Compliance (EPA,
	Local Laws) • Impact Assessments and Monitoring
	Carbon Capture & Storage (CCS) Technologies
0830 - 0930	CCS Principles and Processes • Integration of CCS in Modern Power Plants •
0000 - 0000	Environmental Benefits and Challenges of CCS • Future of CCS in Reducing
	Carbon Footprints
0930 - 0945	Break
	Energy Efficiency & Conservation
09/5 1100	Techniques for Improving Energy Efficiency in Power Plants • Heat Recovery
0343 - 1100	and Waste Heat Utilization $ullet$ Energy Audits and Performance Benchmarking $ullet$
	Sustainable Practices and Energy Conservation Technologies
	Renewable Energy Integration
	Solar, Wind and Geothermal Power in Modern Plants • Hybrid Power Plants:
1100 – 1215	Combining Conventional and Renewable Sources • Grid Integration of
	Intermittent Renewable Energy • Challenges and Opportunities in Renewable
	Energy Adoption
1215 – 1230	Break
	Water Management & Conservation
1230 1330	Water Usage in Power Generation • Strategies for Water Conservation in
1250 - 1550	Cooling and Steam Systems • Desalination Technologies and their Integration
	in Power Plants • Legal and Ethical Issues Surrounding Water Use
	Sustainable Design & Green Technologies
1330 1420	Green Building Standards and Certifications (LEED, BREEAM) • Energy-
1550 - 1420	Efficient Plant Design • Renewable Energy Technologies for Powering Plants •
	Zero-Emission and Net-Zero Plants
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

0730 – 0830	Emerging Technologies in Power Generation
	Advanced Turbine and Combustion Technologies • Energy Storage Systems for
	Power Plants • Advanced Grid Technologies: Smart Grids and Microgrids •
	Fuel Cells and Hydrogen-Based Power Generation
0830 - 0930	Digitalization & the Internet of Things (IoT)
	Digital Twin Technology in Power Plants • IoT Applications for Predictive
	Maintenance and Optimization • Big Data Analytics for Power Plant
	Operations • Cybersecurity in Industrial Control Systems
	Operations Cybersecurity in maastrait Control Dystems

AWS

EE1101 - Page 8 of 10

ilm 🛞

UKAS

0930 - 0945	Break
0945 - 1100	Artificial Intelligence & Machine Learning in Power Plants
	AI Applications for Power Plant Optimization • Machine Learning for
	Predictive Analytics • Autonomous Systems for Plant Monitoring and Control
	Case Studies of AI Implementation in Power Plants
	Smart Grid & Energy Storage Solutions
1100 1215	Overview of Smart Grids and their Benefits • Energy Storage Technologies:
1100 - 1215	Batteries, Pumped Hydro, Flywheels • Integration of Energy Storage in Power
	Plants • The Role of Smart Grids in Sustainable Energy Management
1215 – 1230	Break
	Decentralized Power Generation
1230 1300	Microgrids and Distributed Energy Resources (DER) • Benefits and
1250 - 1500	Challenges of Decentralized Systems • Hybrid Power Generation Systems •
	Future Trends in Local Energy Generation
	Future of Power Plants: Challenges & Opportunities
	Climate Change and its Impact on Power Generation • Decarbonization and
1300 - 1345	Sustainable Power Solutions • The Transition to Low-Carbon and Renewable
	Energy Systems • Global Trends and Policies Shaping the Future of Power
	Plants
	Course Conclusion
1330 - 1345	Using this Course Overview, the Instructor(s) will Brief Participants about a
	Topics that were Covered During the Course
1345 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

EE1101 - Page 9 of 10

Simulators (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulators "Power World", "ETAP software" and "Switchgear Simulator".

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

EE1101 - Page 10 of 10

