

COURSE OVERVIEW ME0978-4D Howden Screw Compressor MK/WRV Operation Maintenance & Troubleshooting

Course Title

Howden Screw Compressor MK/WRV Operation Maintenance & Troubleshooting

Course Date/Venue

November 04-07/Boardroom, Warwick Hotel Doha, Doha, Qatar

Course Reference

ME0978-4D

Course Duration/Credits

Four days/2.4 CEUs/24 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of compressors. It covers the compression cycle and the fundamental of operation of twin screw; the normal operation and shutdown procedures; the construction characteristics including API 619 compliance; the variable volume control MVI and AVI: performance characteristics and superfeed; compressor auxiliary equipment and functions; and the installation checks on alignment of couplings and unit troubleshooting and diagnostics.

During this interactive course participants will learn the major overhaul and dismantling procedures on a screw compressor; the detailed inspection and checking on the clearances of components and bearings; the assembly procedures, detailed measurements and setting of clearances; the pressure testing of the screw compressor, loading and unloading pressures; the efficient measurements and plotting of the operating curves; the preventive maintenance procedures on a daily, weekly and annual basis; and the efficiency and performance monitoring of screw compressors in a professional manner.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a comprehensive knowledge on screw compressors
- Discuss screw compressor covering compression cycle and the fundamental of operation of twin screw
- Employ normal operation and shutdown procedures
- Deal with emergencies during operation and describe the construction characteristics including API 619 compliance
- Recognize the variable volume control MVI and AVI
- Identify the performance characteristics and the superfeed as well as compressor auxiliary equipment and functions
- Carryout installation checks on alignment of couplings and unit troubleshooting and diagnostics
- Prepare for major overhaul, identify spare part tools and perform dismantling procedures on a screw compressor
- Employ detailed inspection and checking on the clearances of components and bearings
- Demonstrate assembly procedures, detailed measurements and setting of clearances
- Perform pressure testing of the screw compressor and setting of the loading and unloading pressures
- Carryout efficient measurements and plotting of the operating curves
- Employ preventive maintenance procedures on a daily, weekly and annual basis
- Monitor the efficiency and performance of screw compressors in a professional manner

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of screw compressors for plant and maintenance engineers, maintenance managers and supervisors and compressor specialists. It should be valuable to senior maintenance mechanics and those who are involved with compressors' operation, maintenance, troubleshooting and overhaul.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **2.4 CEUs** (Continuing Education Units) or 24 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

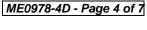
Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Dimitry Rovas, CEng, MSc, PMI-PMP, is a Senior Mechanical Engineer with extensive industrial experience in Oil, Gas, Power and Utilities industries. His expertise includes Vibration Analysis, Vibration Monitoring, Combustion in Boiler Furnaces, Pump Technology, Pump Selection & Installation, Centrifugal Pumps & Troubleshooting, Reciprocating & Centrifugal Compressors, Compressor Control & Protection, Modern Valve Technology, Bearings & Lubrication, Advanced Machinery Dynamics, Modern Heating, Pumps & Valves Maintenance & Troubleshooting, Ventilation, Air-Conditioning (HVAC) & Refrigeration Systems, Pump & Compressors Maintenance & Troubleshooting,

Compressors & Turbines Troubleshooting, New Emergency Air Compressors, Boiler Maintenance & Inspection, Hydraulic System Design & Troubleshooting, Pipe Stress Analysis, Gas Conditioning & Processing, Process Plant Optimization, Effective Production Operations in the Oil & Gas Fields, Gas & Steam Turbines, Turbine Operations, Gas Turbine Technology, Gas Turbine Erection & Commissioning (GE 9FA & GE9FB Units), Large Scale Natural Gas Combined Cycle Power Plant Projects (GE Equipment), Large Scale Natural Gas Cogeneration Plant Projects (GE & Siemens Equipment), Gas Turbine Condition Monitoring & Fault Diagnosis, Control & Operations of Industrial Gas Turbines, Gas Turbine Auxiliary System, Gas & Steam Turbines, Turbine Operations, Gas Turbine Technology, Rubber Compounding, Elastomers, Thermoplastic, Industrial Rubber Products, Rubber Manufacturing Systems, Heat Transfer, Vulcanization Methods, Process Plant Shutdown & Turnaround, Maintenance Optimization & Best Practices, Maintenance Auditing & Benchmarking, Reliability Management, Rotating Equipment, Energy Conservation, Energy Loss Management in Electricity Distribution Systems, Energy Saving, Thermal Power Plant Management, Thermal Power Plant Operation & Maintenance, Heat Transfer, Machine Design, Fluid Mechanics, Heating & Cooling Systems, Heat Insulation Systems, Heat Exchanger & Cooling Towers, Mechanical Erection, Heavy Rotating Equipment, Material Unloading & Storage, Commissioning & Start-Up, Process Safety Management (PSM), HAZMAT & HAZCOM, Laboratory Information Management System (LIMS) and Laboratory Quality Management (ISO 17025). Further, he is also well-versed in MS project & AutoCAD, EPC Power Plant, Power Generation, Combined Cycle Powerplant, Leadership & Mentoring, Project Management, Strategic Planning/Analysis, Construction Management, Team Formation, Relationship Building, Communication, Reporting and Six Sigma. He is currently the Project Manager wherein he is managing, directing and controlling all activities and functions associated with the domestic heating/cooling facilities projects.

During his life career, Mr. Rovas has gained his practical and field experience through his various significant positions and dedication as the EPC Project Manager, Project Manager, GE 9FB Units Materials Manager, Field Engineer, Preventive Maintenance Engineer, Gas Turbine & Erection Engineer, Researcher, Instructor/Trainer, Telecom Consultant and Consultant from various companies such as the Podaras Engineering Studies, Metka and Diadikasia, S.A., Hellenic Petroleum Oil Refinery and COSMOTE.


Mr. Rovas is a Chartered Engineer of the Technical Chamber of Greece. Further, he has Master degrees in Mechanical Engineering and Energy Production & Management from the National Technical University of Athens. Moreover, he is a Certified Instructor/Trainer, a Certified **Project** Management **Professional** (PMP), Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and a Certified Six Sigma Black Belt. He is an active member of Project Management Institute (PMI), Technical Chamber of Greece and Body of Certified Energy Auditors and has further delivered numerous trainings, seminars, courses, workshops and conferences internationally.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,000 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

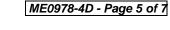
Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1. Monday, 04th of November 2024

Day I.	Monday, 04 Of November 2024
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction to Screw Compressor
0930 - 0945	Break
0945 – 1100	Screw Compressor Theory - The Compression Cycle
	Fundamental of Operation of Twin Screw-First Start up
1100 - 1215	Normal Operation & Shutdown Procedures
1215 - 1230	Break
1230 - 1330	Dealing with Emergencies during Operation
1330 - 1420	The MK/WRV Family of Screw Compressors
1420 – 1430	Recap
1430	Lunch & End of Day One

Tuesday, 05th of November 2024 Day 2:

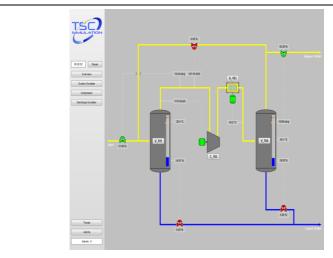

0730 - 0930	Construction Characteristics & API 619 Compliance
0930 - 0945	Break
0945 - 1100	Variable Volume Control-MVI & AVI
1100 - 1215	Performance Characteristics & the Superfeed
1215 - 1230	Break
1230 - 1330	Compressor Auxiliary Equipment & Functions
1330 - 1420	Installation Checks-Alignment of Couplings
1420 - 1430	Recap
1430	Lunch & End of Day Two

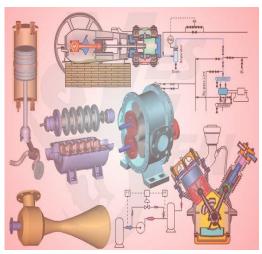
Day 3: Wednesday, 06th of November 2024

0730 - 0930	Unit Troubleshooting & Diagnostics
0930 - 0945	Break
0945 – 1100	Troubleshooting, Low Discharge Temperature & High Discharge
	Temperature
1100 – 1215	Preparing for Major Overhaul-Spare Parts-Tools
1215 – 1230	Break
1230 - 1330	The Dismantling Procedures on a Screw Compressor
1330 - 1420	Detailed Inspection & Checking the Clearances of Components & Bearings
	-What to Replace & Criteria for Replacement
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4: Thursday, 07th of November 2024

- u,	maready, or or more near
0730 - 0830	Assembly Procedures & Detailed Measurements & Setting of Clearances
0830 - 0930	Perform Pressure Testing of the Screw Compressor & Setting of the Loading
	& Unloading Pressures
0930 - 0945	Break
0945 - 1100	Efficiency Measurements & Plotting the Operating Curves
1100 – 1215	Preventive Maintenance Procedures Daily, Weekly Annually
1215 - 1230	Break
1230 - 1345	Monitoring Efficiency & Performance
1345 - 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course





Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulators "SIM 3300 Centrifugal Compressor" and "CBT on Compressors".

SIM 3300 Centrifugal Compressor Simulator

CBT on Compressors

Course Coordinator

Jaryl Castillo, Tel: +974 4423 1327, Email: jaryl@haward.org

