

COURSE OVERVIEW DE0970 Trouble-Free Drilling (Stuck Pipe Prevention)

Course Title

Trouble-Free Drilling (Stuck Pipe Prevention)

Course Date/Venue

Session 1: February 09-13, 2025/Meeting Plus 8, City Centre Rotana Doha Hotel, Doha Qatar

Session 2: August 10-14 2025/ Meeting Plus 8, City Centre Rotana Doha Hotel, Doha, Qatar

DE0970

Course Duration/Credits

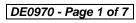
Five days/3.0 CEUs/30 PDHs

Course Description

The single most frequent expensive and unscheduled event while drilling is stuck pipe. pipe incidents Preventing stuck can thousands of dollars in non-productive time. If you attend this course, you will learn all of the twentyseven (27) causes of stuck pipe, what causes each, how to identify them, what immediate action can be taken, what to do for most efficient recovery, and most importantly how to prevent the sticking in the first place.

During the period of this course, participants will be able to learn:-

- Causes and mechanisms of stuck pipe
- Warning signs of impending problems
- How to prevent stuck pipe
- Theory and proper use of jars
- Freeing techniques
- A working knowledge of all the mechanisms which result in pipe becoming stuck.
- Complete diagnostic methods for identifying a specific mechanism
- The methods and procedures available to minimize or eliminate a potential sticking problem when it is encountered



- The knowledge to plan the most effective and least expensive procedure to recover from sticking that does occur
- How to plan a well and then implement that plan to prevent pipe sticking

The course is presented with class discussion and participation is required. Case histories provide practical examples of the problems, recovery methods, and preventive means being discussed. The building of a team concept with maximum coordination and communication capabilities is stressed.

With emphasis on prevention of stuck pipe, the team concept is used throughout the course, explaining the contribution and value of every crewmember in the goal of keeping the pipe free. With your data, courses can be customized, and past stuck pipe incidents can be analyzed to determine what was done correctly and where techniques can be improved.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

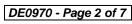
- Apply the latest techniques and procedures in stuck pipe prevention
- Cope with new drilling and updated technologies
- Avoid stuck pipes and improve hole cleaning
- Explain the best methods for avoiding stuck pipe problems while drilling operations and the techniques that are used for pipe releasing in case of occurrence of this problem
- Plan well drilling operations taking into account risks factors of stuck pipe and their inclusion in the well program
- Recognize the indications and signals both downhole and on surface that may lead to a stuck pipe incident
- Describe with the various indicators and causes of stuck pipe during all pipe handling operations
- Express the importance of evaluating the symptoms, accurate reporting and the teamwork required to implement the preventative measures

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of stuck pipe prevention for drilling operations section leaders, drilling engineering supervisors and well engineers.



Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

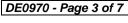
The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.



Course Instructor(s)

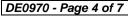
This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Chris Kapetan (Christos Kapetanios), PhD, MSc, BSc, is a Senior Drilling & Process Engineer with over 40 years of international experience within the onshore and offshore oil and gas industry. His wide experience covers Asset Operational Integrity for Operations, Process Plant Operations, Control & Troubleshooting, Plant Shutdown System & Flare Systems, Heat Exchangers & Fired Heaters Operation & Troubleshooting, Gas Conditioning, Treatment & Processing Technology, Production Operations in the Oil & Gas Fields & Surface Facilities, LNG Process, Applied Process Engineering Elements, Production Control Systems, Well Commissioning & Crude Oil Specifications, Hydrogenation

& Gasification Technology, Physical & Chemical Solvents, Sulfide Stress Cracking (SSC), Hydrogen Induced Cracking (HIC), Corrosion, Steels & Alloys, Fertilizer Manufacturing Process Technology, Fertilizer Storage Management (Ammonia & Urea), Process Calculation Methods, Directional Planning, Completion Design, Directional Surveying, Drilling Fluids, Matrix Acidizing, Hydraulic Fracturing, Well Completion Design & Operation, Cased Hole Formation Evaluation, Cased Hole Logs, Production Management, Drilling Operations, Directional Drilling, Gas Lift Operations, Petroleum Business, Petroleum Economics, Gas Lift Valve Changing & Installation, Horizontal & Multilateral Wells, Well Stimulation & Control and Workover Planning, Completions & Workover, Rig Sizing, Hole Cleaning & Logging, Well Completion, Servicing & Work-Over Operations, Practical Reservoir Engineering, X-mas Tree & Wellhead Operations, Maintenance & Testing, Advanced Petrophysics/Interpretation of Well Composite, Construction Integrity & Completion. Coiled Tubing Technology, Corrosion Control, Wireline & Coil Tubing, Pipeline Pigging, Corrosion Monitoring, Cathodic Protection, Root Cause Analysis (RCA), Root Cause Failure Analysis (RCFA), Production Safety and Delusion of Asphalt. Currently, he is the Operations Manager at GEOTECH and an independent Drilling Operations Consultant of various engineering services providers to the international clients as he offers his expertise in many areas of the drilling discipline and is well recognized & respected for his process and procedural expertise as well as ongoing participation, interest and experience in continuing to promote technology to producers around the world. Currently, he is the Operations Consultant & the Technical Advisor at GEOTECH and an independent Drilling Operations Consultant of various engineering services providers to the international clients as he offers his expertise in many areas of the drilling & petroleum discipline and is well recognized & respected for his process and procedural expertise as well as ongoing participation, interest and experience continuing to promote technology to producers around the world.

Throughout his long career life, Dr. Chris has worked for many international companies and has spent several years managing technically complex wellbore interventions in both drilling & servicing. He is a well-regarded for his process and procedural expertise. Further, he was the Operations Manager at ETP Crude Oil Pipeline Services where he was fully responsible for optimum operations of crude oil pipeline, workover and directional drilling, drilling rigs and equipment, drilling of various geothermal deep wells and exploration wells. Dr. Chris was the Drilling & Workover Manager & Superintendent for Kavala Oil wherein he was responsible for supervision of drilling operations and offshore exploration, quality control of performance of rigs, coiled tubing, crude oil transportation via pipeline and abandonment of well as per the API requirements. He had occupied various key positions as the Drilling Operations Consultant, Site Manager, Branch Manager, Senior Drilling & Workover Manager & Engineer, Drilling & Workover Engineer, Process Engineer, Operations Consultant and Technical Advisor in several petroleum companies responsible mainly on an offshore sour oil field (under water flood and gas lift) and a gas field. Further, Dr. Chris has been a Professor of the Oil Technology College.

Dr. Chris has PhD in Reservoir Engineering and a Master's degree in Drilling & Production Engineering from the Petrol-Gaze Din Ploiesti University. Further, he is a Certified Surfaced BOP Stack Supervisor of IWCF, a Certified Instructor/Trainer, a Certified Trainer/Assessor/Internal Verifier by the Institute of Leadership & Management (ILM) and has conducted numerous short courses, seminars and workshops and has published several technical books on Production Logging, Safety Drilling Rigs and Oil Reservoir.



Course Fee

US\$ 8,500 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

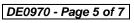
The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction to the Stuck Pipe Problem & Prevention
0930 - 0945	Break
0945 - 1100	Explanation of the Mechanisms of Stuck Pipe
	Differential Sticking ● Hole Pack-off/Bridge ● Wellbore Geometry
1100 - 1230	Mechanical-Related Causes
1230 - 1245	Break
1245 - 1420	Formation-Related Causes
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2

0730 - 0930	Warning Signals of Stuck Pipe
0930 - 0945	Break
	Hole Cleaning
0945 - 1100	Straight-Hole • High-Angle Hole • Better Hole Cleaning • Enhancing
	Hole & Shake Stability
	Impact of the Drilling Team/Roles
1100 - 1230	Driller • Directional Driller • Shakerman/ Derrickman/ Floorhand • Mud
	Logger
1230 - 1245	Break
	Impact of the Drilling Team/Roles (cont'd)
1245 - 1420	Mud Engineer • Drilling Engineer • Drilling Supervisor • Contract
	Supervisor
1420 - 1430	Recap
1430	Lunch & End of Day Two



Day 3

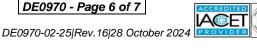
0730 - 0930	Preventive Drilling Practices
	Top Drives ● Good Drilling Practices
0930 - 0945	Break
0945 – 1100	Preventive Drilling Practices (cont'd)
	Making Connections
1100 – 1230	Preventive Drilling Practices (cont'd)
	Good Tripping Practices
1230 - 1245	Break
1245 – 1420	Preventive Drilling Practices (cont'd)
	Trends
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4

,	
0730 - 0930	Basic "Jar" Theory Hydraulic vs. Mechanical Jars • Pump Open Forces
0930 - 0945	Break
0945 - 1100	Basic "Jar" Theory (cont'd) Jar Placement Techniques • Jar Accelerators
1100 – 1230	Basic "Jar" Theory (cont'd) Running Jar in Tension vs. Compression
1230 - 1245	Break
1245 – 1420	Basic "Jar" Theory (cont'd) Jar Vendor
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5

0730 - 0930	Freeing Procedures Overview
	Pre-recorded Data
0930 - 0945	Break
0945 - 1100	Freeing Procedures Overview (cont'd)
	Stretch Readings
1100 -1230	Freeing Procedures Overview (cont'd)
	Maximum Overpull Calculations
1230 - 1245	Break
1245 – 1345	Freeing Procedures Overview (cont'd)
	Methods for Three Mechanisms
1345 - 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course



Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

<u>Course Coordinator</u> Reem Dergham, Tel: +974 4423 1327, Email: <u>reem@haward.org</u>

