

COURSE OVERVIEW PE1059 Field Equipment & Process Monitoring

<u>Course Title</u> Field Equipment & Process Monitoring

CEUS

Course Date/Venue Please see page 2

Course Reference

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Field Equipment & Process Monitoring. It covers the field operations in oil and gas, process flow diagrams (PFDs), pumps, compressors, valves, heat exchangers and pressure vessels; the basic process monitoring principles covering equipment performance monitoring, key operating parameters to track and reporting and logging of equipment status; the static equipment, rotating equipment and mechanical seals and bearings; the routine equipment checks and monitoring techniques; and the common equipment failures and symptoms including the basics of instrumentation.

During this interactive course, participants will learn the analog gauge reading and transmitter interfaces and local displays and error identification from readings; the best practices for consistent readings and signal types; the data logging and daily field logs, calibration basics and fault identification; the daily routine surveillance techniques, abnormal conditions and troubleshooting field equipment issues; the information required by control room and radio communication protocols; the alarm response collaboration, incident logging and shift handovers; the emergency equipment identification and procedures; and the basic emergency response for leaks and failures.

PE1059 - Page 1 of 12

PE1059-06-25|Rev.00|28 April 2025

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on field equipment and process monitoring
- Discuss field operations in oil and gas, process flow diagrams (PFDs), pumps, compressors, valves, heat exchangers and pressure vessels
- Explain the basic process monitoring principles covering equipment performance monitoring, key operating parameters to track and reporting and logging of equipment status
- Identify the static equipment, rotating equipment, mechanical seals and bearings and apply routine equipment checks and monitoring techniques
- Recognize common equipment failures and symptoms including the basics of instrumentation
- Carryout analog gauge reading, transmitter interfaces and local displays, error identification from readings and best practices for consistent readings
- Identify signal types and apply data logging and daily field logs, calibration basics and fault identification
- Employ daily routine surveillance techniques, recognize abnormal conditions and troubleshoot field equipment issues
- Recognize information required by control room and radio communication protocols as well as apply alarm response collaboration and incident logging and shift handovers
- Implement emergency equipment identification and procedures as well as basic emergency response for leaks and failures

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of field equipment and process monitoring for process engineers, plant or operations managers, maintenance managers, instrumentation engineers, control engineers, environmental engineers, mechanical engineers, field technicians, operators and other technical staff.

Course Date/Venue

Session(s)	Course Date	Venue
1	June 22-26, 2025	Olivine Meeting Room, Fairmont Nile City, Cairo, Egypt
2	August 03-07, 2025	Safir Meeting Room, Divan Istanbul, Taksim, Turkey
3	November 09-13, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

PE1059 - Page 2 of 12

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

PE1059 - Page 3 of 12

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Mervyn Frampton is a Senior Process Engineer with over 30 years of industrial experience within the Oil & Gas, Refinery, Petrochemical and Utilities industries. His expertise lies extensively in the areas of Process Troubleshooting, Distillation Towers, Fundamentals of Distillation for Engineers, Distillation Operation and Troubleshooting, Advanced Distillation Troubleshooting, Distillation Technology, Vacuum Distillation, Distillation Column Operation & Control, Oil Movement Storage &

Troubleshooting, Process Equipment Design, Applied Process Engineering Elements, Plant Optimization, Revamping & Debottlenecking, Process Plant Process Troubleshooting & Engineering Problem Solving, Process Plant Monitoring, Catalyst Selection & Production Optimization, Operations Abnormalities & Plant Upset, Process Plant Start-up & Commissioning, Clean Fuel Technology & Standards, Flare, Blowdown & Pressure Relief Systems, Oil & Gas Field Commissioning Techniques, Pressure Vessel Operation, Gas Processing, Chemical Engineering, Process Reactors Start-Up & Shutdown, Gasoline Blending for Refineries, Urea Manufacturing Process Technology, Continuous Catalytic Reformer (CCR), **De-Sulfurization** Technology, Advanced Operational & Troubleshooting Skills, Principles of Operations Planning, Rotating Equipment Maintenance & Troubleshooting, Hazardous Waste Management & Pollution Prevention, Heat Exchangers & Fired Heaters Operation & Troubleshooting, Energy Conservation Skills, Catalyst Technology, Refinery & Process Industry, Chemical Analysis, Process Plant, Commissioning & Start-Up, Alkylation, Hydrogenation, Dehydrogenation, Isomerization, Hydrocracking & De-Alkylation, Fluidized Catalytic Cracking, Catalytic Hydrodesulphuriser, Kerosene Hydrotreater, Thermal Cracker, Catalytic Reforming, Polymerization, Polyethylene, Polypropylene, Pilot Water Treatment Plant, Gas Cooling, Cooling Water Systems, Effluent Systems, Material Handling Systems, Gasifier, Gasification, Coal Feeder System, Sulphur Extraction Plant, Crude Distillation Unit, Acid Plant Revamp and Crude Pumping. Further, he is also well-versed in HSE Leadership, Project and Programme Management, Project Coordination, Project Cost & Schedule Monitoring, Control & Analysis, Team Building, Relationship Management, Quality Management, Performance Reporting, Project Change Control, Commercial Awareness and Risk Management.

During his career life, Mr. Frampton held significant positions as the **Site Engineering Manager**, **Senior Project Manager**, **Process Engineering Manager**, **Project Engineering Manager**, **Construction Manager**, **Site Manager**, **Area Manager**, **Procurement Manager**, **Factory Manager**, **Technical Services Manager**, **Senior Project Engineer**, **Process Engineer**, **Project Engineer**, **Assistant Project Manager**, **Handover Coordinator** and **Engineering Coordinator** from various international companies such as the **Fluor Daniel**, **KBR** South Africa, **ESKOM**, MEGAWATT PARK, CHEMEPIC, PDPS, CAKASA, **Worley Parsons**, Lurgi South Africa, **Sasol**, **Foster Wheeler**, **Bosch & Associates**, **BCG** Engineering Contractors, Fina Refinery, Sapref Refinery, Secunda Engine Refinery just to name a few.

Mr. Frampton has a **Bachelor's degree** in **Industrial Chemistry** from **The City University** in **London**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Trainer/Assessor** by the **Institute of Leadership & Management** (**ILM**) and has delivered numerous trainings, courses, workshops, conferences and seminars internationally.

PE1059 - Page 4 of 12

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

Dubai	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Cairo	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Istanbul	US\$ 6,000 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Overview of Field Operations in Oil & Gas
0830 0030	Role of Field Operations in Upstream/Midstream • Interfaces with Control
0830 - 0930	Rooms & Production Units • Key Operational Challenges in Field
	Environments • Overview of Safety Protocols & Reporting Systems
0930 - 0945	Break
	Introduction to Process Flow Diagrams (PFDs)
0045 1020	Difference Between PFDs & P&IDs • Identifying Key Symbols for Equipment
0945 - 1050	& Flow Paths • Reading & Interpreting a Simple PFD • Common Flow
	Arrangements & Process Blocks
	Types of Field Equipment: Pumps, Compressors, Valves
1030 1130	Functions & Classifications of Pumps • Compressor Basics: Reciprocating
1050 - 1150	versus Centrifugal • Valve Types: Gate, Globe, Check, Control •
	Startup/Shutdown Considerations for Each Equipment

PE1059 - Page 5 of 12

	Heat Exchangers & Pressure Vessels
1120 1215	Shell & Tube versus Plate Type Exchangers • Pressure Vessel Function &
1150 - 1215	Design Basics • Temperature/Pressure Monitoring Points • Safety Devices:
	Relief Valves, Rupture Discs
1215 – 1230	Break
	Basic Process Monitoring Principles
1020 1020	Importance of Equipment Performance Monitoring • Key Operating
1230 - 1330	Parameters to Track • Trends & Deviations: What to Look For • Reporting &
	Logging of Equipment Status
	Workshop: PFD Interpretation & Equipment Mapping
1330 – 1420	Hands-on Practice with Simplified PFDs • Identify Equipment & Flow
	Sequence • Label Monitoring Points • Discuss Typical Data to Be Recorded
	Recap
1420 1420	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

-	Static Equipment: Vessels, Tanks, Heat Exchangers
	Construction & Operation of Process Vessels • Level. Pressure & Temperature
0730 - 0830	Monitoring Points • Inspections: Visual, Ultrasonic, Thickness Checks •
	Preventive Maintenance & Corrosion Monitoring
	Rotating Fauinment: Punns & Compressors
	Classification & Function • Operation Monitoring Discharge Pressure
0830 - 0930	Elozorate • Motor Alignment & Counting Checks • Troubleshooting Start-un
	Problems
0030 0045	Brook
0550 - 0545	Machanical Scale & Praninge
0045 1100	Tures of Costs & Dearing Custome + Cione of Cost Fritume Lashage Withoutien
0945 - 1100	Types of Seals & Bearing Systems • Signs of Seal Failure: Leakage, Vibration •
	Lubrication Systems & Checks • Preaictive Maintenance Strategies
	Routine Equipment Checks & Monitoring Techniques
1100 - 1215	Daily, Weekly & Monthly Checklists • Visual, Auditory & Instrument-Based
1100 1210	Inspections • Digital Tools versus Manual Data Collection • Reporting
	Abnormalities Effectively
1215 – 1230	Break
	Common Equipment Failures & Symptoms
1220 1220	Cavitation, Seal Leaks, Bearing Wear • Overheating, Vibration, Abnormal
1250 - 1550	Noise • Causes of Repeated Equipment Failure • Equipment Failure Case
	Studies
	Workshop: Equipment Walkdown & Fault Tagging
1220 1420	Simulated Walkdown with Fault Identification • Recording Condition
1330 - 1420	<i>Observations</i> • Use of Inspection Forms/Checklists • Discussion on Reporting
	Protocols
	Recap
1400 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

PE1059 - Page 6 of 12

Day 3	Da	av	3
-------	----	----	---

	Basics of Instrumentation
0720 0920	Pressure, Temperature, Level & Flow Basics • Types of Field Instruments
0750 - 0850	(Analog, Digital) • Instrument Tags & Calibration Requirements •
	Introduction to Control Loops
	Reading Gauges & Transmitters
0020 0020	Analog Gauge Reading (Psi, °C, Lpm, etc.) • Transmitter Interfaces & Local
0850 - 0950	Displays • Error Identification from Readings • Best Practices for Consistent
	Readings
0930 - 0945	Break
	Signal Types: 4-20 Ma, Hart, Wireless
0045 1100	Basics of 4-20 Ma Loop & Device Communication • Hart Protocol & Smart
0945 - 1100	Instrument Diagnostics • Wireless Monitoring Systems • Signal Loss &
	Troubleshooting
	Data Logging & Daily Field Logs
1100 - 1215	<i>Structure & Importance of Field Logbooks</i> • <i>Digital versus Manual Data Entry</i>
	• How to Trend Field Parameters • Reporting Out-of-Range Conditions
1215 – 1230	Break
	Calibration Basics & Fault Identification
1220 1220	<i>What is Calibration & Why it Matters • Simple Field Calibration Procedures •</i>
1250 - 1550	Zero/Span Errors & Drift Detection • Handling Out-of-Calibration
	Instruments
	Workshop: Instrument Panel Readings & Fault Logs
1220 1420	Practice Reading Real/Simulated Gauges • Identify Incorrect Readings &
1550 - 1420	Suggest Action • Fill Sample Daily Logbooks • Instrument Status Tagging
	(Working/Faulty)
	Recap
1420 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Dav 4

Duy 4	
0730 – 0830	Daily Routine Surveillance Techniques Best Practice Patrol Routes & Frequency • Standard Observation Checklists • Thermal, Auditory & Vibration Monitoring • Feedback to Control Room on Observations
0830 - 0930	Recognizing Abnormal Conditions Early Signs of Leaks, Corrosion, or Wear • Vibration & Sound Changes • Smell/Sight Indicators (Burnt Odor, Steam, Discoloration) • Gas & Chemical Leak Indicators
0930 - 0945	Break
0945 – 1100	Troubleshooting Field Equipment IssuesSystematic Approach to Troubleshooting • Common Problems & First- Response Actions • Isolation Procedures for Faulty Equipment • Escalation Protocols & Notifications
1100 - 1215	<i>Communication with Control Room</i> <i>Information Required by Control Room</i> • <i>Radio Communication Protocols</i> • <i>Alarm Response Collaboration</i> • <i>Incident Logging & Shift Handovers</i>

PE1059 - Page 7 of 12

1215 – 1230	Break
1230 - 1420	Mock Equipment Fault Diagnosis ExerciseSimulatedMulti-FaultFieldConditionStep-by-StepWalkthroughCauseIdentification& ActionPlanningDiscussionLessonsLearned
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

-	Workshop: Team-Based Troubleshooting Simulation
0730 - 0930	Team Exercise with Role Distribution • Use of Tools, Manuals & Field
	Instruments • Structured Fault-Finding Process • Field Report Presentation
0930 - 0945	Break
	Hands-on Field Inspection & Checklist Use
0945 1100	Practical Inspection of Equipment Models or Mockups • Checklist Completion
0945 - 1100	& Report Writing • Use of Handheld Meters & Readers • Identify Faults &
	Maintenance Needs
	Emergency Equipment Identification & Procedures
1100 _ 1230	Fire Extinguishers, Gas Detectors, Emergency Stops • Muster Points &
1100 - 1250	<i>Evacuation Paths</i> • Use of Breathing Apparatus in Emergencies • Emergency
	Shutdown System Locations
1230 - 1245	Break
	Basic Emergency Response for Leaks & Failures
1245 - 1345	<i>First Response to Gas or Fluid Leak</i> • <i>Isolation & Evacuation Steps</i> • <i>Notifying</i>
	Supervisors & HSE • Personal Safety & Containment Actions
	Course Conclusion
1345 - 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

PE1059 - Page 8 of 12

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulators "Heat Exchanger Tube Layout", "ASPEN HYSYS V12.1", "Centrifugal Pumps and Troubleshooting Guide 3.0", "SIM 3300 Centrifugal Compressor", "CBT on Compressors", "COMPRESS Simulator", "Valve Sizing Simulator", "Valve Simulator 3.0", "Valvestar 7.2 Simulator", "PRV2SIZE Simulator", 'Hexagon PPM COADE TANK 2017 SP1 v9.00.01 (Integraph Tank)", " AME Tank v7.7" and "SafeRoof v2.1".

PE1059 - Page 9 of 12

lew Open Save System Cut Copy I	Paste		UNITS : "ENGLISH,FIL	Plot Tank Plot Plot Plot Cone Elevation - Settlement - Nozle - Roof -	
File Edit	Title Page Input	Scratchpad Analyze	Units	2D Plot	
Tank Data Shell Courses Wind Details Anchor Bol	t and Gusset Details				
General Tank Data	550				
API Design Code	650				
Design Miethod	Une Foot	· ·			
Run Objective	Analyze	II			
Design Temperature, (F)	40				
Design Pressure at Top, (Ib./sq.in.)	0.01				
lank Nominal Diameter [D], (ft.)	20000				
lank Shell Height [HTK], (ft.)	15000				
Design Liquid Level [H], (ft.)	15000				
Bottom Plate Thickness [Tb], (in.)	10				
Liquid Specific Gravity [G]	1.2				
Weight of Attachments/Structures, (lb.)	0				
Distance Down to Top Wind Girder, (ft.)	0				
Joint Efficiency (API 620, API 650 App A or 65	3) [E] 1.0000				
Wind Velocity, (ft./sec.)	30				
Internal Pressure Combination Factor [Fp]	0.4000				
Default Shell Course Material	A-516,70				
Number of Shell Courses	5				
Insulation Thickness, (in.)	0				
Insulation Density, (lb./cu.in.)	0		Y		
Plate Length, (ft.)	3000		A .		
Course Offset, (ft.)	1000				
Include Annular Base Plate Details	V		•••••		
Thickness of Annular Bottom Plate, (in.)	0				
Include Wind Moment in Appendix F.4.2 Cal	culati 🔽				
Minimum Yield Strength of Bottom Plate, (Ib	J/sq.i 262.01	2016	2D Kenne Marrie Const		
		20 116	SD VIEW News Feed	SPIMLicence	
Hala area El				APT INT FURTHER	CAP NOW SCAL SPLIN

PE1059-06-25|Rev.00|28 April 2025

CO. CO. T ADJ CEO U.C. 0001		L
III 🔄 TalkAPISOVS3000		<u>R</u> i
AI II II 中语子 II Work Area		
▰▰▰▰◓;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Press and hold button to rotate. CTRL - rotate about hosicinital axis	<u> </u>
🛅 Oil Storage Tank with Frangible Roof Joints - (Untitled)	- 0	>
File Design Analysis Postprocess Help		
File Design Analysis Postprocess Help	SafeRoof 2.1 X While SafeRoof is intended to aid in the design and analysis of tanks to API 550, neutron to the Thunderhead Engineering Consultants, Inc., the American Petroleum Institute, the Presseach Council, Kansas State University, nor the authors warrant the accuracy or applicability of the program. The user is responsible for all consequences of using this program.	

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

PE1059 - Page 12 of 12

PE1059-06-25|Rev.00|28 April 2025