

COURSE OVERVIEW FE1015 API 584: Integrity Operating Windows (IOWs)

Course Title

API 584: Integrity Operating Windows (IOWs)

Course Date/Venue

September 22-26, 2025/Ajman Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

O CEUS

Course Reference FE1015

<u>Course Duration/Credits</u> Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of API 584: Integrity Operating Windows (IOWs). It covers the role of integrity in process safety management; the key elements of asset integrity programs and the fundamental concepts of IOWs; the structure and scope of API RP 584, IOWs in the asset lifecycle and types and hierarchy of IOWs; the stakeholder roles and responsibilities, process for establishing IOWs and critical process parameters risk-based approach to IOWs; setting IOW limits and the sources of data for IOW development; and the change management in IOWs, IOWs in process safety and operational excellence.

During this interactive course, participants will learn the IOW documentation and communication, monitoring and data collection: the immediate response actions. investigation and root cause analysis; the integration with maintenance and inspection programs and training and competency for IOWs; the damage mechanisms and IOWs in specialized equipment and processes; the major failures and impact of IOW deviations on asset integrity; the auditing and assurance of IOW programs, leveraging digitalization, advanced analytics, benchmarking and best practices; the IOWs in regulatory compliance and audit readiness; the program effectiveness review and selfand the action planning IOW assessment; for implementation.

FE1015 - Page 1 of 9

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on integrity operating windows (IOWs) in accordance with API 584 standards
- Discuss the role of integrity in process safety management and the key elements of asset integrity programs
- Explain the fundamental concepts of IOWs, structure and scope of API RP 584 and IOWs in the asset lifecycle
- Identify the types and hierarchy of IOWs including stakeholder roles and responsibilities
- Recognize the process for establishing IOWs as well as critical process parameters risk-based approach to IOWs, setting IOW limits and sources of data for IOW development
- Carryout change management in IOWs and IOWs in process safety and operational excellence
- Employ IOW documentation and communication including IOW monitoring and data collection
- Implement immediate response actions, investigation and root cause analysis and integration with maintenance and inspection programs
- Develop training and competency for IOWs and discuss damage mechanisms and IOWs in specialized equipment and processes
- Review major failures and the impact of IOW deviations on asset integrity
- Apply auditing and assurance of IOW programs, leveraging digitalization, advanced analytics, benchmarking and best practices
- Carryout IOWs in regulatory compliance and audit readiness, program effectiveness review and self-assessment and action planning for IOW implementation

Who Should Attend

This course provides an overview of all significant aspects and considerations of API 584: integrity operating windows (IOWs) for mechanical, piping, and static equipment engineers, inspection and integrity engineers, reliability and maintenance engineers, hse and process safety engineers, process engineers , project engineers and other technical staff who evaluate IOW programs.

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a **Tablet PC**.

FE1015 - Page 2 of 9

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

BAG

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

<u>The International Accreditors for Continuing Education and Training</u> <u>(IACET - USA)</u>

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

FE1015 - Page 3 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Danny Gul (P.E), is a Senior Inspection Engineer with extensive years of experience within the Oil & Gas, Petrochemical, Process and Power Industries. His wide expertise lies extensively in the areas of Risk Based Inspection, RBI Methodology, RBI Assessment, Fitness-for-Service (FFS), Tank Inspection & Repair, Tank Calibration & Testing, Welded Tanks for Oil Storage (API 650), Atmospheric & Low Pressure Inspection (API RP 575), Pressure

Vessel Inspection & Repair, Inspection & Repair of Erection Activities, Corrosion & Materials Inspection, Metallurgy, Corrosion & Prevention of Failures, Material Selection & Properties, Corrosion Prevention, Corrosion Technology & Inspection, Materials & Corrosion Control, Metallurgy & Corrosion Engineering, Material Selection & Properties, Welding Inspection Technology, Welding & Machining, Welding Procedure Specifications & Qualifications, Welding Safety, Fabrication & Site Inspection, Site Erection Quality Control, Welding & Non-Destructive Testing (NDE), Hydro & Pneumatic Testing, Degradation Mechanism & Consequence Analysis, Risk Management & Reduction, Risk Analysis, Risk Determination & Assessment, Equipment Integrity & Reliability, Failure Mode & Effect Analysis (FMEA), Reliability & Asset Management, Piping System, Process Hazard Analysis (LOPA), QRA, SIL Evaluation, FTA, ETA and Safety & Environmental Assessment.

During his Career Life, Mr. Gul has gained his practical and field experience through his various significant positions and dedication as the **Professional Mechanical Engineer**, an **International Welding Engineer (IWE)**, **Inspection Specialist**, **API 653 Project Control Coordinator**, **Technical Instructor/Trainer (API ASME)**, **Nuclear Material & Equipment Inspector**, **QA/QC Head and Expert**, **API 653 & API 580 Authorized Inspector**, **Process Safety**, **Inspection** and **Integrity Expert** for numerous international companies like the Schlumberger, Tumas, Silverteknik, Assystem, American Petroleum Inspector, Alltechmep, TUV Nord and Szutest.

Mr. Gul has a **Bachelor's** degree in **Mechanical Engineering** from the **Istanbul Technical University**, **Turkey**. Further, he is a **Certified Instructor/Trainer**, a **Certified** Aboveground Storage Tank Inspector (**API 653**), a **Certified** Risk Based Inspector (**API 580**), a Certified Corrosion & Materials Inspector (**API 571**), a **Certified** Pressure Vessel Inspector (**API 510**), a **Certified** Piping Inspector (**API 570**), and holds a **Level 2** certificate in **Radiographic Testing (RT)** and **Ultrasonic Testing (UT)** by the **certification of Welds and Testing** and a **Certified Internal Verifier/Trainer/Assessor** by the **Institute of Leadership & Management (ILM**). He has further delivered numerous trainings, courses, seminars, conferences & workshops internationally.

FE1015 - Page 4 of 9

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Monday, 22 nd of September 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Overview of Asset Integrity Management
	Definition and Objectives of Asset Integrity • Regulatory and Industry
	Drivers • Role of Integrity in Process Safety Management • Key Elements of
	Asset Integrity Programs
0930 - 0945	Break
	Integrity Operating Windows (IOWs)
0045 1020	Definition and Fundamental Concepts of IOWs • Purpose and Benefits of
0945 - 1050	IOWs • Historical Background and Industry Incidents • Key Terminology and
	Definitions
	Structure & Scope of API RP 584
1020 1120	Purpose and Evolution of API RP 584 • Major Changes in the Second Edition
1030 - 1130	• Structure of the Standard and Its Key Sections • Relationship with Other
	API Standards (e.g., 510, 570, 580, 581)
	IOWs in the Asset Lifecycle
1130 – 1215	IOWs During Design and Commissioning • IOWs in Normal Operation •
	IOWs in Maintenance and Shutdown • IOWs in Decommissioning
1215 – 1230	Break
1215 - 1230	Types & Hierarchy of IOWs
	Critical versus Non-Critical IOWs • Primary and Secondary IOWs •
	Parameter Selection and Prioritization • Setting Limits: Normal, Alert, Action

FE1015 - Page 5 of 9

1230 - 1420	Stakeholder Roles & Responsibilities
	Operations and Engineering • Process Safety and Inspection • Management
	and Leadership • Training and Competency Requirements
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One
Day 2.	Tuesday, 23 rd of September 2025
	Process for Establishing IOWs
	Sten-hu-Sten Methodology ner API RP 584 • Integrating IOWs with Existing
0730 – 0900	Management Systems • Documentation Requirements • Annroval and
	Governance
	Identifying Critical Process Parameters
0000 0020	<i>Process Parameter Selection Criteria</i> • <i>Examples of Common IOW Parameters</i>
0900 - 0930	(Temperature, Pressure, etc.) • Use of Process Flow Diagrams and P&IDs •
	Failure Modes and Effects Related to Parameters
0930 - 0945	Break
	Risk-Based Approach to IOWs
0945 1100	Integration with Risk-Based Inspection (RBI) • Consequence and Likelihood
0343 - 1100	Assessment • Linkage to Damage Mechanisms • Prioritization of IOW
	Development
	Setting IOW Limits
1100 1230	Establishing Normal, Alert, and Action Limits • Technical Basis for Limit
1100 - 1230	Selection • Degradation Mechanisms and Threshold Values • Documenting
	the Rationale for Limits
1215 - 1230	Break
	Sources of Data for IOW Development
1230 1330	Use of Historical Operating Data • OEM Recommendations and Design
1250 - 1550	Documents • Process Hazard Analysis (PHA) Outputs • Incident
	Investigation Learnings
	Change Management in IOWs
1330 – 1345	Managing Revisions and Updates • MOC Process for IOW Changes •
	<i>Communication of Changes to Stakeholders</i> • <i>Recordkeeping and Traceability</i>
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about
	the Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3:	Wednesday, 24 th of September 2025
0730 – 0900	IOWs in Process Safety & Operational Excellence
	Alignment with Process Safety Management (PSM) Systems • Relationship
	to Safety Instrumented Systems (SIS) • Integration with Permit-to-Work and
	LOTO Systems • Role in Incident Prevention and Mitigation
0900-0930	IOW Documentation & Communication
	Developing IOW Datasheets • Use of Digital Tools and Databases •
	Visualization and Dashboarding Options • Communication and Awareness
	Programs
0930 - 0945	Break

FE1015 - Page 6 of 9

FE1015-09-25|Rev.00|23 July 2025

UKAS

BOH

0945 - 1100	IOW Monitoring & Data Collection
	Selection of Monitoring Technologies • Real-Time versus Periodic Monitoring
	• Data Integrity and Quality Assurance • Alarm Management for IOW
	Deviations
	Response to IOW Deviations
1100 1220	Immediate Response Actions • Investigation and Root Cause Analysis •
1100 - 1250	Short-Term versus Long-Term Corrective Actions • Documentation and
	Reporting Requirements
1215 – 1230	Break
	Integration with Maintenance & Inspection Programs
1220 1220	Coordination with Mechanical Integrity Inspections • Impact on Preventive
1250 - 1550	and Predictive Maintenance • Role in Turnaround Planning and Execution •
	Feedback Loop to Reliability and Inspection Teams
	Training & Competency for IOWs
1220 1245	Training Requirements for Staff • Competency Assessment and Development
1330 - 1343	• Case Studies and Practical Exercises • Sustaining Awareness and
	Engagement
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about
	the Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4:	Thursday, 25 th of September 2025
0730 - 0900	Damage Mechanisms & IOWs Corrosion, Erosion, and Fouling • High-Temperature Hydrogen Attack (HTHA) • Brittle Fracture and Embrittlement • Stress Corrosion Cracking (SCC) and Others
0900 - 0930	<i>IOWs in Specialized Equipment & Processes</i> <i>Fired Heaters and Boilers</i> • <i>Pressure Vessels and Piping Systems</i> • <i>Reactors, Columns, and Exchangers</i> • <i>Storage Tanks and Utilities</i>
0930 - 0945	Break
0945 – 1100	Lessons Learned from Industry IncidentsReview of Major Failures (Case Studies) • Impact of IOW Deviations onAsset Integrity • Human Factors and Organizational Lessons • IncorporatingLearnings into IOW Programs
1100 - 1230	Auditing & Assurance of IOW ProgramsInternal and External Audit Processes • Key Audit Checklist Items •Performance Metrics and KPIs • Corrective and Preventive Actions
1215 – 1230	Break
1230 - 1330	<i>Leveraging Digitalization & Advanced Analytics</i> <i>Integration with Digital Twins</i> • <i>Predictive Analytics for IOWs</i> • <i>Use of AI</i> <i>and Machine Learning</i> • <i>Remote Monitoring and IIoT Applications</i>

FE1015 - Page 7 of 9

1330 - 1345	Continuous Improvement & Program Maturity
	Feedback Mechanisms and Reviews • Benchmarking and Best Practices •
	Roadmap to Program Maturity • Sustaining Organizational Culture for
	Integrity
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about
	the Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5:	Friday, 26 th of September 2025
	Case Study Workshops: Developing IOWs
0720 0820	Team-Based Scenario Analysis • Developing IOWs for a Process Unit (e.g.,
0730 - 0830	Distillation Column) • Setting Limits and Response Plans • Group
	Presentations and Feedback
	Real-World IOW Deviation Scenarios
0820 0020	Role-Play Exercises on Deviation Management • Root Cause Analysis and
0830 - 0930	Corrective Action Planning • Communication and Escalation Pathways •
	Documentation and Regulatory Reporting
0930 - 0945	Break
	IOWs in Regulatory Compliance & Audit Readiness
0045 1100	Understanding Regulatory Expectations (e.g., OSHA, EPA) • Preparing for
0945 - 1100	Audits and Inspections • Document Control and Recordkeeping Best
	Practices • Aligning IOWs with Company Policies
	Program Effectiveness Review & Self-Assessment
1100 - 1230	IOW Program Maturity Assessment Tools • Gap Analysis and Action
1100 1200	Planning • Measuring Effectiveness with Performance Indicators •
	Continuous Improvement Strategies
1230 - 1245	Break
	Action Planning for IOW Implementation
1245 - 1315	Developing an Implementation Roadmap • Change Management and
	Stakeholder Engagement • Resource Planning and Training Schedules •
	Milestones and Success Criteria
1215 1100	Course Conclusion
1345 - 1400	Using this Course Overview, the Instructor(s) will Brief Participants about
	the Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

FE1015 - Page 8 of 9

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

FE1015 - Page 9 of 9

