

COURSE OVERVIEW HE1287 Advanced Risk Assessment Practices

Course Title Advanced Risk Assessment Practices

Course Date/Venue

Session 1: July 20-24, 2025/Meeting Plus 9, City Centre Rotana, Doha, Qatar Session 2: October 12-16, 2025/Meeting Plus 9, City Centre Rotana, Doha, Qatar

O CEUS

(30 PDHs)

Course Reference HE1287

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date knowledge of Advanced Risk Assessment Practices. It covers the risk management principles and frameworks, hazard identification techniques (HAZID), risk assessment process and hierarchy of control and qualitative and semi-quantitative methods; and the team-based risk assessment facilitation skills, regulatory and industry standards in risk assessment and explain the advance concepts of HAZOP.

Further, the course will also discuss the failure mode and effects analysis (FMEA/FMECA), event tree analysis (ETA), and bowtie analysis and barrier management; objectives and scope of QRA, frequency analysis and data sources, consequences modeling techniques, risk contours and individual versus societal risk and human reliability analysis (HRA); and the layer protection analysis (LOPA), safety integrity level (SIL) determination, occupational health risk assessment and environmental risk assessment (ERA).

HE1287 - Page 1 of 9

During this interactive course, participants will learn the security risk assessments, advanced risk register development and risk communication and decision-making; the cost-benefits and ALARP demonstration, integration of risk assessment and business continuity; and the lead risk reviews and the risk revalidation and risk maturity and culture in organizations.

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Apply and gain an advanced knowledge on risk assessment practices
- Discuss risk management principles and frameworks, hazard identification techniques (HAZID), risk assessment process and hierarchy of control and qualitative and semi-quantitative methods
- Carryout team-based risk assessment facilitation skills, regulatory and industry standards in risk assessment and explain the advance concepts of HAZOP
- Discuss failure mode and effects analysis (FMEA/FMECA), event tree analysis (ETA), and bowtie analysis and barrier management
- Determine the objectives and scope of QRA, frequency analysis and data sources, consequences modeling techniques, risk contours and individual versus societal risk and human reliability analysis (HRA)
- Explain layer protection analysis (LOPA), safety integrity level (SIL) determination, occupational health risk assessment and environmental risk assessment (ERA)
- Perform security risk assessments, advanced risk register development and risk communication and decision-making
- Identify cost-benefits and ALARP demonstration, integration of risk assessment and business continuity as well as lead risk reviews and risk revalidation and explain risk maturity and culture in organizations

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of advanced risk assessment practices for risk managers, process safety engineers, HSE (health, safety and environment) professionals, technical consultants and emergency planners and response coordinators.

HE1287 - Page 2 of 9

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

<u>The International Accreditors for Continuing Education and Training</u> (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

HE1287 - Page 3 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Peter Christian is an International Expert in Safety, Health, Environmental and Quality with over 30 years of practical and industrial experience in NEBOSH International General Certificate in Occupational Health & Safety, Lifting & Rigging Equipment HAZOP, HAZWOPER, HAZMAT, HAZCOM, PHA (Process Hazard Analysis), FMEA, HAZID, ISO 14001, OHSAS 18001, ISO 9001, Process Safety Management (PSM), Safety, Health, Environmental & Quality Management (SHEQ), Behavioral Safety Management, Industrial Hygiene, Human Factors

Engineering, Risk Assessment, Fire Fighting, Rope Rescue Operations, Emergency Response within process industries. He is currently the **President** of **NKWE** and spearheads the companies major projects and business ventures, where he specializes in the areas of SHEQ solutions, ISO, Quality Control and OSHA systems. Previously, he has had much on-hand experience in the initiation and management of projects (technical as well organizational development) including involvement in design of process plants; the commissioning & decommissioning of process plants; the operational and financial responsibility for large process operations; risk management, accident investigation, risk assessment, hazard identification and emergency preparedness & response (oil spillage and gas explosions).

Much earlier in his career, Mr. Christian was a **HAZOP Team Leader** for numerous **HAZOP** studies and he has further managed the **Health**, **Safety & Environmental** and **Quality** requirements of a large process company. This included responsibilities as an auditor for compliance against **SHEQ standards**, **ISO standards** and the **Fatal Risk Control Protocols**. He then facilitated the development and implementation of the above standards as a group and at site level as part of the SHEQ council. Moreover, he established, trained and led a Rope rescue team and a high level emergency care clinic and ambulance service for many years. He still abseils recreationally and leads adventure groups during abseiling activities and serves as a rescue team member for mountain and water emergencies.

During his career life, Mr. Christian has gained his practical and field experience through his various significant positions as the **Plant Manager**, **Project Metallurgist**, **Metallurgist**, **HSE Team Leader**, **SHEC Superintendent**, **Mentor**, Instructor/Trainer, Acting **Technical Manager**, **Process Plant Superintendent**, Acting **Project Leader**, Acting **Plant Superintendent**, Appointed **Health & Safety & Environmental Superintendent**, Production Technician, Acting **Senior Shiftsman**, Foreman and Learner – Official Extraction Metallurgy from various companies such as the NKWE Consulting, SAMANCOR, Middleburg Mine Services (Pty) Ltd., Koomfontein Mines, Emelo Mine Services, Gencor Group and South African Defence Force.

Mr. Christian has a **Postgraduate Studies** in **Advanced Executive Programme** and a **National Higher Diploma** (NHD) & a **National Diploma** in **Extraction Metallurgy**. He is also a **Certified/Registered Tutor** in **NEBOSH International General Certificate**, **Certified Auditor** in **OHSAS 18001**, **ISO 14001** & **ISO 9001**, a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management (ILM)**, a **Six Sigma Black Belt Coach** and holds a Certificate in Facilitate Learning Using a Variety of Given Methodologies **NQF Level 5** (**EDTP-SETA**) as a **Certified Facilitator**. He has further delivered innumerable courses, trainings, workshops and conferences globally.

HE1287 - Page 4 of 9

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures 20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 6,000 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day I	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Risk Management Principles & Frameworks ISO 31000:2018 & Its Integration in Organizations • Risk Management Process Lifecycle • Key Definitions: Hazard, Risk, Control & Residual Risk • Governance & Oversight in Enterprise Risk Management (ERM)
0930 - 0945	Break
0945 - 1030	Hazard Identification Techniques (HAZID) Structured What-If Technique (SWIFT) • Brainstorming & Prompt Word Methods • Hazard Mapping & Bow-Tie Identification • Use of Historical Data & Incident Databases
1030 - 1130	Risk Assessment Process & Hierarchy of Control Risk Matrices & Severity-Likelihood Scoring • Determining Tolerability (ALARP Concept) • Risk Prioritization & Ranking Tools • Control Hierarchy (Eliminate to PPE)
1130 – 1215	<i>Introduction to Qualitative & Semi-Quantitative Methods</i> <i>Qualitative Risk Rating versus Decision Trees</i> • <i>Risk Matrices Calibration &</i> <i>Interpretation</i> • <i>Semi-Quantitative Tools: Risk Graphs, LOPA Basics</i> • <i>Benefits & Limitations of Each Method</i>
1215 - 1230	Break

HE1287 - Page 5 of 9

1230 - 1330	Team-Based Risk Assessment Facilitation Skills Defining Roles & Responsibilities • Managing Biases & Group Dynamics • Tools for Effective Facilitation & Recording • Handling Conflict & Driving Consensus
1330 - 1420	Regulatory & Industry Standards in Risk Assessment OSHA PSM, CCPS, API RP 750/754 • IEC 61882 (HAZOP), IEC 61511 (SIS Lifecycle) • Corporate Risk Assessment Standards • Legal Implications of Poor Risk Assessment
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

Day 2	
0730 - 0830	HAZOP - Advanced Concepts High-Consequence Deviation Analysis • Identifying & Analyzing Safeguards • Applying HAZOP to Batch & Non-Continuous Processes • Software Tools for HAZOP (PHAWorks, PHA-Pro)
0830 - 0930	Failure Mode & Effects Analysis (FMEA/FMECA) Traditional versus Advanced FMEA • Risk Priority Number (RPN) & Its Limitations • Integration of Severity, Occurrence & Detectability • FMECA for Safety-Critical Equipment
0930 - 0945	Break
0945 - 1100	Event Tree Analysis (ETA) Logic & Branching for Consequence Modeling • Barrier Effectiveness Integration • Probability Estimation Along Paths • Integration & QRA Outputs
1100 - 1215	Fault Tree Analysis (FTA)Boolean Logic Gates & System Failures • Top Event Definition & Basic Events• Qualitative & Quantitative FTA • Cut-Set Analysis & Minimal Path Sets
1215 - 1230	Break
1230 - 1330	Bowtie Analysis & Barrier Management Visualizing Threats, Consequences, & Barriers • Linking to Performance Standards & Assurance • Integration & Safety Cases & ALARP • Tracking Degradation & Escalation Factors
1330 - 1420	Scenario-Based Risk Assessment Workshops Building Realistic Risk Scenarios (Fire, Explosion, Toxic Release) • Human Factors in Scenario Planning • Multidisciplinary Team Collaboration • Report Writing & Documentation
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

HE1287 - Page 6 of 9

Day 3	
0730 - 0830	QRA Overview & Applications
	<i>Objectives & Scope of QRA</i> • <i>Steps in a QRA (From Data Collection to Results)</i> • <i>Applications in Facility Siting & Licensing</i> • <i>Limitations &</i>
	Assumptions
	Frequency Analysis & Data Sources
0830 - 0930	Use of Generic versus Site-Specific Failure Data • Historical Incident
0050 - 0950	Databases (OREDA, TNO, EI) • Failure Rate Modeling: Weibull, Exponential,
	Lognormal • Sensitivity Analysis in Frequency Estimates
0930 - 0945	Break
	Consequence Modeling Techniques
	Dispersion Modeling (Toxic Gas, Smoke, Vapor Clouds) • Fire & Explosion
0945 – 1100	Modeling (Jet Fire, Pool Fire, BLEVE, VCE) • Thermal Radiation \mathcal{E}
	<i>Overpressure Calculations</i> • Use of Software Tools (PHAST, ALOHA, FLACS
	Overview)
	Risk Contours & Individual versus Societal Risk
1100 – 1215	FN Curves & Their Interpretation • Iso-Risk Contours & Land Use Planning •
1100 1210	Risk Acceptability Criteria & Benchmarking • Presentation of QRA Results to
	Stakeholders
1215 – 1230	Break
	Human Reliability Analysis (HRA)
1230 - 1330	Human Error Classifications (Slips, Lapses, Mistakes) • THERP & HEART
1200 1000	Methods • Influence of Fatigue, Workload & Design on Error Rates •
	Integrating HRA into Overall Risk Profiles
1000 1400	QRA Case Study Workshop
1330 – 1420	Building a QRA Input Data Sheet • Selecting Scenarios for Analysis • Risk
	Calculation Walkthrough • Result Interpretation & Reporting
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1420	
1430	Lunch & End of Day Three

Day 4

Day 4	
0730 - 0830	Layer of Protection Analysis (LOPA)
	IPLs (Independent Protection Layers) Definition & Criteria • Initiating Events & Consequence Selection • Risk Gap Analysis & SIL Implications • LOPA
	Worksheets & Examples
0830 - 0930	Safety Integrity Level (SIL) Determination
	IEC 61508 & IEC 61511 Principles • Risk Graph & LOPA-Based SIL
	Allocation • SIL Verification & Lifecycle Management • Impact on SIS Design
	& Operation
0930 - 0945	Break
	Occupational Health Risk Assessments
0045 1100	Exposure Risk Assessment for Chemical, Physical, Biological Hazards •
0945 – 1100	Monitoring & Exposure Control Measures • Industrial Hygiene Metrics
	(TLVs, PELs) • Control Banding Approaches
1100 - 1215	Environmental Risk Assessment (ERA)
	Source-Pathway-Receptor Models • Ecotoxicity, Air Dispersion, Groundwater
	Contamination • Environmental Receptors & Vulnerability • Environmental
	Impact Matrices
1215 – 1230	Break
	📾 🛎 🔛 HE1287 - Page 7 of 9

1230 - 1330	Security Risk AssessmentsThreat, Vulnerability, & Consequence Models • Facility Protection Levels(Physical, Cyber, Procedural) • Security Layers & Access Controls •Integration & HSE Risk Registers
1330 - 1420	Advanced Risk Register DevelopmentBowtie-Based Risk Register Structuring • Prioritization Algorithms & HeatMaps • Tracking Actions & Control Effectiveness • Integration & Audit &Compliance Systems
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

Day 5	
	Risk Communication & Decision-Making
0730 - 0830	Tailoring Messages for Different Stakeholders • Visualizing Risk: Dashboards,
	Matrices, & Plots • Techniques for Influencing Risk-Based Decisions •
	Building Trust Through Transparent Communication
	Cost-Benefit & ALARP Demonstration
0830 - 0930	Cost of Risk versus Cost of Control • ALARP Triangle & Demonstration
0830 - 0930	Techniques • Societal versus Individual Risk Trade-Offs • Tools for Cost-
	Effectiveness Evaluation
0930 - 0945	Break
	Integration of Risk Assessment & Business Continuity
0945 – 1030	Risk-Based Business Impact Analysis • Continuity & Recovery Plans Linkage
	Black Swan & Systemic Risks Enhancing Organizational Resilience
	Leading Risk Reviews & Risk Revalidation
1030 – 1130	Periodic Review Schedules & Triggers • Management of Change (MOC)
1050 - 1150	Integration • Effective Facilitation of Revalidation Workshops • Auditing Risk
	Management System
	Risk Maturity & Culture in Organizations
1130 – 1230	Measuring Risk Culture Maturity • Role of Leadership in Risk Behavior •
	Embedding Risk Ownership & Accountability • Cultural Change Strategies
1230 – 1245	Break
	Capstone Risk Assessment Project
1245 – 1345	Team-Based Advanced Case Study • Conduct Qualitative/Quantitative Risk
	Analysis • Present Risk Reduction Strategies • Course Review & Feedback
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

HE1287 - Page 8 of 9

<u>Practical Sessions</u> This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator Reem Dergham, Tel: +974 4423 1327, Email: reem@haward.org

HE1287 - Page 9 of 9

