

COURSE OVERVIEW SS0037

ASQ Approved Lean Six Sigma Certification – Black Belt

(One Week Awareness)

Course Title

ASQ Approved Lean Six Sigma Certification – Black Belt (One Week Awareness)

Course Date/Venue

October 19-23, 2025/Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

Course Reference

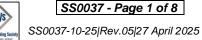
SS0037

Course Duration/Credits

Five days/3.5 CEUs/35 PDHs

Course Introduction

80% of this course is practical sessions where participants will be engaged in a series of interactive small groups, class workshops and role-plays.


This course is designed to provide participants with a detailed and up-to-date overview of black belt lean six sigma. It covers the foundation of Lean and Six Sigma; the drivers, metrics, projects and theory of constraints; the customer data, project planning tools, project documentation and basic lean six sigma metrics; and the team dynamics and performance, measure, minitab, process mapping, cause and effect analysis, FMEA and probability and statistics.

Further, this course will also discuss measurement system analysis, data collection; process capability, analyze phase and hypothesis the ANOVA. regression, chi-square. testing: graphical analysis, lean analysis tools, phase transition and lean improvement tools; the design of experiments as well as DoE Golf Experiment; the implementation and validation of the solutions, improving phase transition, and controlling phase; and the standard work, control charting, control plans, and control phase transition

During this interactive course, participants will learn the enterprise leadership, roadblocks, change management and team management; the benchmarking, performance measures, financial measures and team management; the charter and tracking, measure phase, data types, exploratory data analysis, probability, advanced process capability and analyzing phase; the regression, multivariate, logistic regression, statistical versus practical significance, sample size, central limit theorem and confidence intervals; the non-parametrics, GB DOE refresher minitab, fractional factorial experiments, catapult, split plot designs, design for six sigma and advanced lean tools; the implementation and pilot improvements, the acceptance sampling plans, and total productive maintenance; and the visual management, measurement system reanalysis, control plan and sustain improvements.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on black belt lean six sigma
- Discuss the foundation of Lean and Six Sigma, drivers, metrics, projects and theory of constraints
- Identify customer data, project planning tools, project documentation and basic lean six sigma metrics
- Review team dynamics and performance, measure, minitab, process mapping, cause and effect analysis, FMEA and probability and statistics
- Carryout measurement system analysis, data collection, process capability, analyze phase and hypothesis testing
- Determine ANOVA, regression, chi-square, graphical analysis, lean analysis tools, phase transition and lean improvement tools
- Discuss design of experiments as well as DoE Golf Experiment
- Implement and validate solutions, improve phase transition, control phase and apply standard work, control charting, control plans and control phase transition
- Carryout enterprise leadership, handle roadblocks and apply change management and team management
- Employ benchmarking, performance measures, financial measures and team management
- Recognize charter and tracking, measure phase, data types, exploratory data analysis, probability, advanced process capability and analyze phase
- Explain regression, multivariate, logistic regression, statistical versus practical significance, sample size, central limit theorem and confidence intervals
- Identify non-parametrics, GB DOE refresher minitab, fractional factorial experiments, catapult, split plot designs, design for six sigma and advanced lean tools
- Review implementation and pilot improvements as well as apply acceptance sampling plans and total productive maintenance
- Employ visual management, measurement system reanalysis, control plan and sustain improvements

Who Should Attend

This course is intended for those who are from diverse organizational functions such as operations, quality, logistics, finance, production, engineering and other staff functions seeking to bring significant business results to their organizations. Participants are traditionally well versed in technical aspects of their jobs, are team leaders and are effective project facilitators.

Certificate Accreditations

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.5 CEUs** (Continuing Education Units) or **35 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Dimitry Rovas, CEng, MSc, PMI-PMP, SMRP-CMRP is a Senior Management Consultant with extensive industrial experience in Oil, Gas, Power and Utilities industries. His expertise includes Leadership Change Management, Talent Management, Presentation Skills, Negotiation Skills, Interpersonal Skills, Communication Skills, Collaboration Skills, Developing Effective Partnership, Developing & Managing Budget, Technical Design & Development, Analytical & Troubleshooting Techniques, Interpersonal Skills, Leadership & Mentoring, Time Management,

Performance Management, Strategic Planning & Analysis and Communication & Reporting Skills, Project Management, Construction Management, Project Management Planning & Control Techniques, Project Risk Management, Quality Management, Project Acceleration Techniques, Scope Control Management, Contract Management, Asset Management, **Procurement Purchasing** Management, Warehousing, Quality Management System (QMS) and Business Management. Further, he is also well-versed in Energy Conservation, Electricity Distribution Systems, Energy Saving, Combined Cycle Power Plant, Gas & Steam Turbines, Heat Transfer, Machine Design, Fluid Mechanics, Heating & Cooling Systems, Heat Insulation Systems and Heat Exchanger & Cooling Towers. He was the **Project Manager** wherein he was managing, directing and controlling all activities and functions associated with the domestic heating/cooling facilities projects.

During his life career, Mr. Rovas has gained his practical and field experience through his various significant positions and dedication as the EPC Project Manager, Field Engineer, Preventive Maintenance Engineer, Researcher, Instructor/Trainer, Telecom Consultant and Consultant from various companies such as the Podaras Engineering Studies, Metka and Diadikasia, S.A., Hellenic Petroleum Oil Refinery and COSMOTE.

Mr. Rovas is a Chartered Engineer of the Technical Chamber of Greece. Further, he has Master's degree in Mechanical Engineering and Energy Production & Management from the National Technical University of Athens. Moreover, he is a Certified Instructor/Trainer, a Certified Maintenance and Reliability Professional (CMRP) from the Society of Maintenance & Reliability Professionals (SMRP), a **Management Professional** (PMP), a Certified Certified Project Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and a Certified Six Sigma Black Belt. He is an active member of Project Management Institute (PMI), Technical Chamber of Greece and Body of Certified Energy Auditors and has further delivered numerous trainings, seminars, courses, workshops and conferences internationally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 19th of October 2025

Day I.	Suriday, 19 Of October 2025
0700 - 0730	Registration & Coffee
0730 - 0745	Welcome & Introduction
0745 - 0800	PRE-TEST
0800 - 0815	Overview & Foundation of Lean & Six Sigma
0815 - 0845	Drivers & Metrics
0845 - 0915	Projects
0915 - 0930	Break
0930 - 1000	Theory of Constraints
1000 - 1030	Customer Data
1030 - 1045	Project Planning Tools
1045 - 1100	Project Documentation
1100 - 1115	Break
1115 - 1130	Basic Lean Six Sigma Metrics
1130 - 1145	Team Dynamics & Performance
1145 - 1215	Overview of Measure
1215 - 1245	Introduction to Minitab
1245 - 1315	Prayer Break/Lunch
1315 - 1330	Process Mapping
1330 - 1345	Cause & Effect Analysis
1345 - 1415	FMEA
1415 - 1450	Probability & Statistics
1450 – 1500	Recap
1500	Lunch & End of Day One

Day 2: Monday, 20th of October 2025

Day 2.	monady, 20 Or October 2020
0700 – 0730	Measurement Systems Analysis
0730 – 0800	Data Collection & Summary
0800 - 0830	Process Capability
0830 - 0915	Analyze Phase Overview
0915 - 0930	Break
0930 - 1000	Hypothesis Testing
1000 - 1030	ANOVA
1030 - 1100	Regression
1100 – 1115	Chi-square
1115 – 1130	Break
1130 - 1145	Graphical Analysis
1145 - 1215	Lean Analysis Tools
1215 - 1245	Analyze Phase Transition
1245 – 1315	Prayer Break/Lunch
1315 - 1330	Improve Overview
1330 - 1345	Lean Improvement Tools
1345 - 1415	Introduction to Design of Experiments
1415 - 1450	DoE Golf Experiment
1450 – 1500	Recap
1500	Lunch & End of Day Two

Day 3: Tuesday, 21st of October 2025

Day 3:	Tuesday, 21 st of October 2025
0700 - 0730	Implementation & Validation Solutions
0730 - 0800	Improve Phase Transition
0800 - 0830	Control Phase Overview
0830 - 0915	Standard Work
0915 - 0930	Break
0930 - 1000	Control Charting
1000 - 1030	Control Plans
1030 - 1100	Control Phase Transition
1100 - 1115	Enterprise Leadership
1115 - 1130	Break
1130 - 1145	Handling Roadblocks
1145 - 1215	Change Management & Team Management
1215 - 1245	Benchmarking
1245 - 1315	Prayer Break/Lunch
1315 - 1330	Performance Measures
1330 - 1345	Financial Measures
1345 - 1415	Team Management
1415 - 1450	Voice of the Customer
1450 - 1500	Recap
1500	Lunch & End of Day Three

Day 4: Wednesday, 22nd of October 2025

<u> </u>	11 Can Coday; 22 C. Cottobol 2020
0700 - 0730	Charter & Tracking
0730 - 0800	Overview of Measure Phase
0800 - 0830	Data Types
0830 - 0915	Exploratory Data Analysis
0915 - 0930	Break
0930 - 1000	Probability
1000 - 1030	Advanced Process Capability
1030 - 1100	Overview of Analyze Phase
1100 – 1115	Regression
1115 – 1130	Break
1130 - 1145	Multivariate
1145 - 1215	Logistic Regression
1215 - 1245	Statistical vs Practical Significance
1245 - 1315	Prayer Break/Lunch
1315 - 1330	Sample Size
1330 - 1345	Central Limit Theorem & Confidence Intervals
1345 - 1415	ANOVA
1415 - 1450	Chi-Square & Contingency Tests
1450 – 1500	Recap
1500	Lunch & End of Day Three

Day 5: Thursday, 23rd of October 2025

Day J.	Thursday, 25 or October 2025
0700 - 0730	Non-Parametrics
0730 - 0745	Overview of Improve
0745 - 0815	GB DOE Refresher Minitab
0815 - 0845	Fractional Factorial Experiments
0845 - 0900	Catapult
0900 - 0915	Split Plot Designs
0915 - 0930	Break
0930 - 1000	Design for Six Sigma
1000 - 1030	Advanced Lean Tools
1030 - 1045	Review Implementation & Pilot Improvements
1045 - 1100	Acceptance Sampling Plans
1100 – 1115	Total Productive Maintenance
1115 – 1130	Break
1130 - 1145	Visual Management
1145 - 1200	Measurement System Reanalysis
1200 - 1215	Control Plan
1245 – 1315	Prayer Break/Lunch
1315 - 1330	Sustain Improvements
1330 - 1345	Course Conclusion
1345 - 1445	POST-TEST
1445 – 1500	Presentation of Course Certificates
1500	Lunch & End of Course

Practical Sessions

80% of this highly-interactive course is practical sessions. Theory learnt (20%) will be applied using various role-plays, case studies and practical sessions.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

