

COURSE OVERVIEW OE0094 Offshore Structure Platform Design

Course Title

Offshore Structure Platform

Course Date/Venue

Session 1: June 15-19, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE Session 2: November 10-14, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our-state-of-theart simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Offshore Structure Platform Design. It covers the offshore oil & gas production, types of offshore structures and functional requirements and design considerations; the offshore environmental loads and design considerations; the types of offshore platforms and offshore structural materials and selection criteria; the codes and standards for offshore platform design; the offshore structural loads and analysis; the structural analysis techniques for offshore platforms; and foundation design for offshore platforms; and the jacket structure design and analysis floating structure design and stability considerations.

During this interactive course, participants will learn the fatigue and fracture analysis in offshore structures; the fire, blast, and explosion considerations in offshore design; the hydrodynamic considerations in offshore structures; the mooring and anchoring system design; the offshore structural integrity management and riser and pipeline interface with offshore platforms; the offshore platform decommissioning strategies and structural modification for platform life extension; the digital twin technology in offshore platform design; the advanced offshore structural safety and risk assessment; the offshore structural fabrication and construction techniques and integration of offshore renewable energy with platforms; and the offshore structural health monitoring (SHM) and IOT applications.

OE0094 - Page 1 of 9

OE0094-06-25|Rev.00|02 February 2025

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on offshore structure platform design
- Discuss offshore oil & gas production, types of offshore structures and functional requirements and design considerations
- Recognize offshore environmental loads and design considerations including types of offshore platforms and offshore structural materials and selection criteria
- Review the codes and standards for offshore platform design and apply offshore structural loads and analysis
- Carryout structural analysis techniques for offshore platforms and foundation design for offshore platforms
- Illustrate jacket structure design and analysis floating structure design and stability considerations
- Apply fatigue and fracture analysis in offshore structures as well as fire, blast, and explosion considerations in offshore design
- Recognize hydrodynamic considerations in offshore structures and mooring and anchoring system design
- Carryout offshore structural integrity management and discuss riser and pipeline interface with offshore platforms
- Employ offshore platform decommissioning strategies and structural modification for platform life extension
- Discuss digital twin technology in offshore platform design and apply advanced offshore structural safety and risk assessment
- Carryout offshore structural fabrication and construction techniques and integration of offshore renewable energy with platforms
- Describe offshore structural health monitoring (SHM) and IOT applications

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations on offshore structure platform design for structural engineers, environmental engineers, marine engineers, civil engineers, geotechnical engineers, naval architects, construction, and maintenance of offshore platform as well as in related fields such as offshore operations personnel, construction managers, consultants, and energy sector professionals.

OE0094 - Page 2 of 9

OE0094-06-25|Rev.00|02 February 2025

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

ACCREDITED
 ACCREDITED
 PROVIDER

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

OE0094 - Page 3 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Captain Mohamed Ghanem, MSc, BSc, is a Senior Jack-up Barge Captain with extensive experience in Drilling Rigs, Jackup Barge Operations and MODU within the Oil & Gas industry. His expertise widely covers in the areas of Jack-up Barges, Rig Safety Protocols, Drilling Rigs & Jack-up Barges Maintenance & Servicing, Drilling Rig Components, Naval & Marine Engineering, Marine Planning & MODU Stability, Rig Move Operation, UWILD, Stability Reports, Draft

Surveys, **Rig Reactivation & Under Water Surveys**, Damage Survey & Cost Estimation, Tanker Vetting for Terminals, Loading Master Certification for Oil & Gas Terminals, Marine Terminal Operation, Liquefied Gas Tankers & Jetty Operation, Global Maritime Distress Safety System (GMDSS), International Maritime Conventions & Codes, International Ship and Port Facility Security Code (ISPS) Code, Buoyage System & International Code of Signals, Oil & Gas Marine Terminals, Port Terminals Crisis Management & Major Emergency Response, Marine Hazards Prevention & Control, Single Buoy Mooring System (SBM), Emergency Response Procedure, Oil Spill Management & Recovery, Oil Spill Prevention & Control, Oil Spill Combating Operations, Oil & Gas Marine Terminals, Offshore Marine Operation Management, Vessel Hull & Machinery Survey, Oil & Gas Fields Offshore Survey, Oil & Gas Terminals Loading & Discharging, Terminal Operations, Seamanship, Shipping Overview, Marine Fire Fighting Equipment, Hull Damage Control, Vessel Rescue, Life Saving, Safety Process, Major Emergency Management & Control, Crisis Management during Oil Spill and Firefighting. He is currently the Jack Up Barge Captain & Marine Planner wherein he oversee all the operations onboard the vessel including navigation, maintenance and compliance with local regulations.

During his life career, Captain Mohamed has gained his practical and field experience through his various significant positions and dedication as the **Barge Engineer & Marine Planner Onboard**, **Trainee Barge Engineer Onboard**, **Assistant Barge Master II Onboard**, **Assistant Barge Master Onboard**, **Design Engineer**, **Ship Yard Site Engineer/QC Engineer**, **Marine Draft Surveyor**, **Ship Repair Engineer**, **Vessel Repairing Engineer**, **Metal Cutting & Welding Planner**, **Marine Engineer Onboard**, **Technical Manager**, **Maintenance Mechanical Engineer** and **Reserve Marine Officer** from the Shelf Drilling Co, Marine & Engineering Consulting, ADMARINE III (X-GSF 103) at ADES, Oceandro Large Yacht Builder, International Inspection Company, Synchrony-Lift Works and B-Tech Company.

Captain Mohamed has **Bachelor's** degree in **Naval Architecture & Marine Engineering** and currently enrolled in **Master's** degree in **Naval Architecture & Marine Engineering**. Further, he is a **Certified Instructor/Trainer**, a **Certified Trainer**, **Assessor & Internal Verifier** by the **Institute of Leadership of Management (ILM)** and holds a certificate in **Marine III Engineer** and OIM & Mobile Offshore Drilling Unit (**MODU**). He is an **active member** of The International Transport Workers' Federation (**ITF**), UK and has delivered numerous courses, workshops, trainings and conferences worldwide.

OE0094 - Page 4 of 9

Course Fee

US\$ 8,000 per Delegate + VAT. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Dav 1

0720 0000	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0915	Introduction to Offshore Structures
	Overview of Offshore Oil & Gas Production • Types of Offshore Structures
	(Fixed, Floating, Subsea) • Functional Requirements and Design Considerations
	• Evolution of Offshore Platform Designs
0915 - 0930	Break
	Offshore Environmental Loads & Design Considerations
0930 - 1100	Wind, Wave, and Current Effects on Offshore Platforms • Tidal and Seismic
0930 - 1100	Impact on Platform Stability • Metocean Data Collection and Analysis • Ice
	and Marine Growth Effects on Structures
	Types of Offshore Platforms
1100 - 1215	Fixed Platforms (Jacket, Gravity-Based, Compliant Towers) • Floating
	Platforms (FPSO, Semi-Submersibles, TLP, SPAR) • Subsea Production
	Systems • Hybrid and Innovative Offshore Structures
1215 - 1230	Break
1230 - 1315	Offshore Structural Materials & Selection Criteria
	Steel vs. Concrete Offshore Structures • Corrosion Resistance and Coating
	Systems • Material Selection for Extreme Marine Environments • Composite
	Materials and Advanced Alloys

OE0094 - Page 5 of 9

1315- 1420	Codes & Standards for Offshore Platform DesignAPIRP 2A-WSD & APIRP 2A-LRFD• ISO 19902Offshore StructuresDesignStandard• DNV-GLOffshore Structural Guidelines• Specific OffshoreDesignRequirements
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

0730 - 0930	Offshore Structural Loads & Analysis
	Dead Loads and Live Loads in Offshore Design • Environmental Load
	Considerations (Wave, Wind, Seismic) • Dynamic Load Effects on Platform
	Stability • Load Combination and Structural Response Analysis
0930 - 0945	Break
	Structural Analysis Techniques for Offshore Platforms
0945-1100	Linear and Non-Linear Analysis Methods • Finite Element Modeling (FEM) for
0945-1100	<i>Offshore Structures</i> • <i>Static vs. Dynamic Analysis of Offshore Platforms</i> • <i>Case</i>
	Study: Structural Simulation of Offshore Jackets
	Foundation Design for Offshore Platforms
	Types of Offshore Foundations (Piled, Gravity, Suction Caissons) •
1100 – 1215	Geotechnical Considerations in Offshore Foundation Design • Pile Driving
	Analysis and Installation Techniques • Soil-Pile Interaction and Settlement
	Analysis
1215 - 1230	Break
	Jacket Structure Design & Analysis
1230 - 1315	Design Considerations for Fixed Jacket Platforms • Load Transfer Mechanism in
1250 - 1515	Jacket Structures • Structural Bracing and Fatigue Design Considerations •
	Corrosion Protection and Maintenance Strategies
	Floating Structure Design & Stability Considerations
1315 – 1420	Hydrostatic and Hydrodynamic Stability of Floating Platforms • Mooring and
1515 - 1420	Anchoring Systems for Floating Structures • Wave Motion Response and Heave
	Compensation • FPSO Design Considerations for Operations
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

Duyo	
0730 - 0930	Fatigue & Fracture Analysis in Offshore Structures
	Fatigue Loading in Offshore Environments • Fracture Mechanics and Crack
	Propagation Analysis • Fatigue Life Prediction for Offshore Components •
	Design for Fatigue Mitigation and Crack Arresting Strategies
0930 - 0945	Break
0945 - 1100	Fire, Blast & Explosion Considerations in Offshore Design
	Fire Protection Standards for Offshore Platforms • Blast Load Considerations
	and Mitigation Strategies • Structural Integrity Against Hydrocarbon
	Explosions • Case Study: Piper Alpha Disaster and Lessons Learned
	Break Fire, Blast & Explosion Considerations in Offshore Design Fire Protection Standards for Offshore Platforms • Blast Load Consideration and Mitigation Strategies • Structural Integrity Against Hydrocarb

OE0094 - Page 6 of 9

OE0094-06-25|Rev.00|02 February 2025

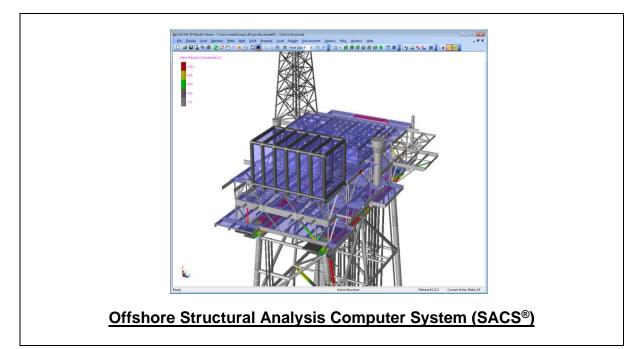
1100 - 1215	Hydrodynamic Considerations in Offshore StructuresWave Loading and Wave-Structure Interaction • Offshore Structural Responseto Hydrodynamic Forces • Modeling of Wave Impact on Offshore Installations• Computational Fluid Dynamics (CFD) in Offshore Design
1215 -1230	Break
1230 - 1315	Mooring & Anchoring System DesignTypes of Mooring Systems (Spread Mooring, Turret Mooring, Single-PointMooring)• Load Analysis for Mooring System Selection• Mooring LineFatigue and Corrosion Protection• Tension Leg Platform (TLP) MooringSystem Considerations
1315 - 1420	Offshore Structural Integrity Management Structural Health Monitoring (SHM) for Offshore Platforms • Inspection Techniques for Offshore Structural Integrity • Risk-Based Inspection (RBI) Planning for Offshore Facilities • Best Practices in Structural Maintenance
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

0730 - 0930	Riser & Pipeline Interface with Offshore Platforms
	<i>Riser System Design and Engineering Considerations</i> • <i>Dynamic Loading and</i>
	Fatigue Analysis for Risers • Pipeline Routing and Installation Challenges •
	Interface Management Between Subsea and Topsides Systems
0930- 0945	Break
	Decommissioning & Life Extension of Offshore Platforms
0945 - 1100	<i>Offshore Platform Decommissioning Strategies</i> • <i>Structural Modification for</i>
	Platform Life Extension • Cost-Benefit Analysis for Decommissioning vs.
	Redeployment • Case Study: Decommissioning of North Sea Platforms
	Case Study on Offshore Structural Failures
1100 - 1215	<i>Case Study: BP Thunder Horse Platform Incident</i> • <i>Case Study: Alexander</i>
1100 - 1215	Kielland Semi-Submersible Disaster • Case Study: Platform Structural Retrofit
	• Lessons Learned for Future Offshore Platform Design
1215 - 1230	Break
	Digital Twin Technology in Offshore Platform Design
1230- 1315	What is a Digital Twin? • Using Digital Twins for Offshore Asset Management
1230-1313	• Benefits of Predictive Maintenance with Digital Twins • Digitalization
	Initiatives for Offshore Facilities
	Finite Element Analysis (FEA) for Offshore Structural Simulation
1315 - 1420	Introduction to FEA in Offshore Structural Design • Structural Performance
1515 - 1420	Prediction Using FEA • Case Study: FEA Modeling of Offshore Jacket
	Structures • Software Tools for Offshore FEA Simulations
1420 – 1430	Recap
	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>
	<i>Topics that were Discussed Today and Advise Them of the Topics to be</i>
	Discussed Tomorrow
1430	Lunch & End of Day Four

OE0094 - Page 7 of 9

0730 - 0930 in Offshore Platform Safety • Emergency Response Planning for Offsh Structural Failures • Risk Assessment Framework for Offshore Platforms 0930 - 0945 Break 0945 -1100 Offshore Structural Fabrication & Construction Techniques Offshore Fabrication Yards and Their Capabilities • Welding and Corros Protection Methods • Modular Construction vs. On-Site Fabrication Offshore Platform Construction Guidelines 1100 - 12515 Integration of Offshore Renewable Energy with Platforms Offshore Wind Turbines Co-Existing with Oil & Gas Platforms • Floating S Technology for Offshore Power Supply • Hybrid Renewable and Hydrocar Platform Designs • Case Study: Hybrid Offshore Energy Systems 1215 - 1230 Break 0ffshore Structural Health Monitoring (SHM) and IoT Applications Smart Sensors for Real-Time Structural Monitoring • IoT-Based Condi Monitoring for Offshore Platforms • Al and Machine Learning for Structur Data Analysis • Future Trends in Offshore Structural Monitoring 1300 - 1330 Case Studies in Offshore Structural Design Offshore Jacket Platform Design Case Study • FPSO and Semi-Submers Platform • Best Practices in Offshore Structural Maintenance 1330 - 1345 Design a Fixed Offshore Component •Case Study Review and Group Discussion (FEA) on an Offshore Component •Case Study Review and Group Discussion Course Topics that were Covered During the Course 1400 - 1415 POST-TEST 14100 - 1415 Presentation of Course Certificates	Day 5	
0730 - 0930 in Offshore Platform Safety • Emergency Response Planning for Offsh 0930 - 0945 Break 0945 - 1100 Offshore Structural Fabrication & Construction Techniques 0945 - 1100 Offshore Structural Fabrication & Construction vs. On-Site Fabrication 0945 - 1100 Offshore Fabrication Yards and Their Capabilities • Welding and Corros 0945 - 1100 Offshore Structural Fabrication & Construction vs. On-Site Fabrication 00ffshore Platform Construction Guidelines Integration of Offshore Renewable Energy with Platforms 1100 - 12515 Offshore Vind Turbines Co-Existing with Oil & Gas Platforms • Floating S 1215 - 1230 Break 01230 1300 Offshore Structural Health Monitoring (SHM) and IoT Applications 1230 1300 Smart Sensors for Real-Time Structural Monitoring • IoT-Based Condi 1300- 1330 Offshore Jacket Platform Design Case Study • FPSO and Semi-Submers 1300- 1330 Case Studies in Offshore Structural Design 1330 - 1345 Practical Offshore Structural Design Workshop (cont'd) 1330 - 1345 Design a Fixed Offshore Component •Case Study Review and Group Discussion 1345 - 1400 Using this Course Overview, the Instructor(s) will Brief Participants about 1345 - 1400 Post-TEST 1400 - 1415 </td <td rowspan="3">0730 - 0930</td> <td>Advanced Offshore Structural Safety & Risk Assessment</td>	0730 - 0930	Advanced Offshore Structural Safety & Risk Assessment
In Offshore Platform Safety • Emergency Response Planning for Offsh 0930 - 0945 Break 0945 -1100 Offshore Structural Fabrication & Construction Techniques 0945 -1100 Offshore Fabrication Yards and Their Capabilities • Welding and Corros 0945 -1100 Offshore Fabrication Yards and Their Capabilities • Welding and Corros 0945 -1100 Offshore Fabrication Yards and Their Capabilities • Welding and Corros 0945 -1100 Offshore Structural Fabrication & Construction vs. On-Site Fabrication 0ffshore Platform Construction Guidelines Integration of Offshore Renewable Energy with Platforms 1100 - 12515 Offshore Wind Turbines Co-Existing with Oil & Gas Platforms • Floating S. 1215 - 1230 Break 1230 1300 Monitoring for Offshore Power Supply • Hybrid Renewable and Hydrocar 1230 1300 Smart Sensors for Real-Time Structural Monitoring • IoT-Based Condi 1300-1330 Gffshore Structural Health Monitoring (SHM) and IoT Applications 1330 -1345 Case Studies in Offshore Structural Monitoring 1330 -1345 Design a Fixed Offshore Structural Design 1330 -1345 Design a Fixed Offshore Component •Case Study Review and Group Discussion 1345 - 1400 Using this Course Overview, the Instructor(s)		Risk-Based Structural Integrity Management (RBSIM) • HAZOP and HAZID
0930 - 0945 Break 0945 -1100 Offshore Structural Fabrication & Construction Techniques Offshore Fabrication Yards and Their Capabilities • Welding and Corros Protection Methods • Modular Construction vs. On-Site Fabrication Offshore Platform Construction Guidelines 1100 - 12515 Integration of Offshore Renewable Energy with Platforms Offshore Wind Turbines Co-Existing with Oil & Gas Platforms • Floating S Technology for Offshore Power Supply • Hybrid Renewable and Hydrocar Platform Designs • Case Study: Hybrid Offshore Energy Systems 1215 - 1230 Break 00ffshore Structural Health Monitoring (SHM) and IoT Applications Smart Sensors for Real-Time Structural Monitoring • IoT-Based Condi Monitoring for Offshore Platform S • AI and Machine Learning for Structu Data Analysis • Future Trends in Offshore Structural Monitoring 1300-1330 Case Studies in Offshore Structural Design Offshore Structural Offshore Structural Design Offshore Jacket Platform Design Case Study • FPSO and Semi-Submers Platform • Best Practices in Offshore Structural Maintenance 1330 -1345 Practical Offshore Structural Design Offshore Component •Case Study Review and Group Discussio. 1345 - 1400 Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course 1400 - 1415 POST-TEST 1415 - 1430 Presentation of Course Certificates		in Offshore Platform Safety • Emergency Response Planning for Offshore
0930 - 0945 Break 0945 -1100 Offshore Structural Fabrication & Construction Techniques Offshore Fabrication Yards and Their Capabilities • Welding and Corros Protection Methods • Modular Construction vs. On-Site Fabrication Offshore Platform Construction Guidelines 1100 - 12515 Integration of Offshore Renewable Energy with Platforms Offshore Wind Turbines Co-Existing with Oil & Gas Platforms • Floating S Technology for Offshore Power Supply • Hybrid Renewable and Hydrocar Platform Designs • Case Study: Hybrid Offshore Energy Systems 1215 - 1230 Break 00ffshore Structural Health Monitoring (SHM) and IoT Applications Smart Sensors for Real-Time Structural Monitoring • IoT-Based Condi Monitoring for Offshore Platform S • AI and Machine Learning for Structu Data Analysis • Future Trends in Offshore Structural Monitoring 1300-1330 Case Studies in Offshore Structural Design Offshore Structural Offshore Structural Design Offshore Jacket Platform Design Case Study • FPSO and Semi-Submers Platform • Best Practices in Offshore Structural Maintenance 1330 -1345 Practical Offshore Structural Design Offshore Component •Case Study Review and Group Discussio. 1345 - 1400 Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course 1400 - 1415 POST-TEST 1415 - 1430 Presentation of Course Certificates		Structural Failures • Risk Assessment Framework for Offshore Platforms
0945 -1100Offshore Fabrication Yards and Their Capabilities • Welding and Corros Protection Methods • Modular Construction vs. On-Site Fabrication Offshore Platform Construction Guidelines1100 - 12515Integration of Offshore Renewable Energy with Platforms Offshore Wind Turbines Co-Existing with Oil & Gas Platforms • Floating S. Technology for Offshore Power Supply • Hybrid Renewable and Hydrocar Platform Designs • Case Study: Hybrid Offshore Energy Systems1215 - 1230Break1230 1300Offshore Structural Health Monitoring (SHM) and IoT Applications Smart Sensors for Real-Time Structural Monitoring • IoT-Based Condi Monitoring for Offshore Platform Design • AI and Machine Learning for Structur Data Analysis • Future Trends in Offshore Structural Monitoring Offshore Jacket Platform Design Case Study • FPSO and Semi-Submers Platform • Best Practices in Offshore Structural Maintenance1330 -1345Practical Offshore Structural Design Workshop (cont'd) Design a Fixed Offshore Platform Using API 2A Standards • Perform a L Analysis for an Offshore Component • Case Study Review and Group Discussio Course Conclusion1345 - 1400Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 - 1415POST-TEST1415 - 1430Presentation of Course Certificates	0930 - 0945	
0943 - 1100Protection Methods• Modular Construction vs. On-Site Fabrication Offshore Platform Construction Guidelines1100 - 12515Integration of Offshore Renewable Energy with Platforms Offshore Wind Turbines Co-Existing with Oil & Gas Platforms • Floating S Technology for Offshore Power Supply• Hybrid Renewable and Hydrocar Platform Designs1215 - 1230Break1230 1300Offshore Structural Health Monitoring (SHM) and IoT Applications Smart Sensors for Real-Time Structural Monitoring • AI and Machine Learning for Structur Data Analysis1300- 1330Case Studies in Offshore Structural Design Offshore Jacket Platform Design Case Study • FPSO and Semi-Submers Platform • Best Practices in Offshore Structural Maintenance1330 - 1345Practical Offshore Structural Design Workshop (cont'd) Design a Fixed Offshore Structure • Conduct a Finite Element Anal (FEA) on an Offshore Component •Case Study Review and Group Discussio1345 - 1400Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 - 1415POST-TEST 1415 - 1430		Offshore Structural Fabrication & Construction Techniques
0943 - 1100Protection Methods• Modular Construction vs. On-Site Fabrication Offshore Platform Construction Guidelines1100 - 12515Integration of Offshore Renewable Energy with Platforms Offshore Wind Turbines Co-Existing with Oil & Gas Platforms • Floating S Technology for Offshore Power Supply• Hybrid Renewable and Hydrocar Platform Designs1215 - 1230Break1230 1300Offshore Structural Health Monitoring (SHM) and IoT Applications Smart Sensors for Real-Time Structural Monitoring • AI and Machine Learning for Structur Data Analysis1300- 1330Case Studies in Offshore Structural Design Offshore Jacket Platform Design Case Study • FPSO and Semi-Submers Platform • Best Practices in Offshore Structural Maintenance1330 - 1345Practical Offshore Structural Design Workshop (cont'd) Design a Fixed Offshore Structure • Conduct a Finite Element Anal (FEA) on an Offshore Component •Case Study Review and Group Discussio1345 - 1400Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 - 1415POST-TEST 1415 - 1430	0045 1100	Offshore Fabrication Yards and Their Capabilities • Welding and Corrosion
Offshore Platform Construction GuidelinesIntegration of Offshore Renewable Energy with Platforms1100 - 12515Integration of Offshore Renewable Energy with Platforms0ffshore Wind Turbines Co-Existing with Oil & Gas Platforms• Floating STechnology for Offshore Power Supply• Hybrid Renewable and HydrocarPlatform Designs• Case Study: Hybrid Offshore Energy Systems1215 - 1230Break1230 1300Smart Sensors for Real-Time Structural Monitoring• IoT-Based CondiMonitoring for Offshore Platforms• AI and Machine Learning for StructuralData Analysis• Future Trends in Offshore Structural Monitoring1300- 1330Case Studies in Offshore Structural Design Offshore Jacket Platform Design Case Study• FPSO and Semi-Submers Platform • Best Practices in Offshore Structural Maintenance1330 -1345Practical Offshore Structural Design Workshop (cont'd) Design a Fixed Offshore Platform Using API 2A Standards• Perform a L Analysis for an Offshore Component • Case Study Review and Group Discussio1345 - 1400Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 - 1415POST-TEST1415 - 1430Presentation of Course Certificates	0945 -1100	
1100 - 12515Offshore Wind Turbines Co-Existing with Oil & Gas Platforms • Floating S. Technology for Offshore Power Supply • Hybrid Renewable and Hydrocar Platform Designs • Case Study: Hybrid Offshore Energy Systems1215 - 1230Break1230 1300Offshore Structural Health Monitoring (SHM) and IoT Applications Smart Sensors for Real-Time Structural Monitoring • IoT-Based Condi Monitoring for Offshore Platforms • AI and Machine Learning for Structure Data Analysis • Future Trends in Offshore Structural Monitoring1300- 1330Case Studies in Offshore Structural Design Offshore Jacket Platform Design Case Study • FPSO and Semi-Submers Platform • Best Practices in Offshore Structural Maintenance1330 -1345Practical Offshore Structural Design Workshop (cont'd) Design a Fixed Offshore Jacket Structure • Conduct a Finite Element Anal (FEA) on an Offshore Component •Case Study Review and Group Discussion Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 - 1415POST-TEST 1415 - 1430		
1100 - 12515Technology for Offshore Power Supply • Hybrid Renewable and Hydrocar Platform Designs • Case Study: Hybrid Offshore Energy Systems1215 - 1230Break1230 1300Offshore Structural Health Monitoring (SHM) and IoT Applications Smart Sensors for Real-Time Structural Monitoring • IoT-Based Condi. Monitoring for Offshore Platforms • AI and Machine Learning for Structural Data Analysis • Future Trends in Offshore Structural Monitoring1300- 1330Case Studies in Offshore Structural Design Offshore Jacket Platform Design Case Study • FPSO and Semi-Submers Platform • Best Practices in Offshore Structural Maintenance1330 -1345Practical Offshore Structural Design Workshop (cont'd) Design a Fixed Offshore Jacket Structure • Conduct a Finite Element Anal (FEA) on an Offshore Component •Case Study Review and Group Discussio1345 - 1400Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 - 1415POST-TEST1415 - 1430Presentation of Course Certificates		Integration of Offshore Renewable Energy with Platforms
Technology for Offshore Power SupplyHybrid Renewable and Hydrocar Platform Designs1215 - 1230Break1215 - 1230Break1230 1300Offshore Structural Health Monitoring (SHM) and IoT Applications Smart Sensors for Real-Time Structural Monitoring1230 1300Smart Sensors for Real-Time Structural Monitoring1230 1300IoT-Based Condi Monitoring for Offshore Platforms1300- 1330Case Studies in Offshore Structural Design Offshore Jacket Platform Design Case Study1300- 1330Offshore Jacket Platform Design Case Study1330 -1345Practical Offshore Structural Design Workshop (cont'd) Design a Fixed Offshore Jacket Structure1345 - 1400Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 - 1415POST-TEST POST-TEST1415 - 1430Presentation of Course Certificates	1100 10515	<i>Offshore Wind Turbines Co-Existing with Oil & Gas Platforms</i> • <i>Floating Solar</i>
Platform Designs • Case Study: Hybrid Offshore Energy Systems1215 - 1230Break1230 1300Offshore Structural Health Monitoring (SHM) and IoT Applications Smart Sensors for Real-Time Structural Monitoring • IoT-Based Condi Monitoring for Offshore Platforms • AI and Machine Learning for Structure Data Analysis • Future Trends in Offshore Structural Monitoring1300- 1330Case Studies in Offshore Structural Design Offshore Jacket Platform Design Case Study • FPSO and Semi-Submers Platform • Best Practices in Offshore Structural Maintenance1330 -1345Practical Offshore Structural Design Workshop (cont'd) Design a Fixed Offshore Jacket Structure • Conduct a Finite Element Anal (FEA) on an Offshore Component •Case Study Review and Group Discussio1345 - 1400Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 - 1415POST-TEST1415 - 1430Presentation of Course Certificates	1100 - 12515	Technology for Offshore Power Supply • Hybrid Renewable and Hydrocarbon
1215 - 1230Break1230 1300Offshore Structural Health Monitoring (SHM) and IoT Applications Smart Sensors for Real-Time Structural Monitoring • IoT-Based Condi. Monitoring for Offshore Platforms • AI and Machine Learning for Structural Data Analysis • Future Trends in Offshore Structural Monitoring1300- 1330Case Studies in Offshore Structural Design Offshore Jacket Platform Design Case Study • FPSO and Semi-Submers Platform • Best Practices in Offshore Structural Maintenance1330 -1345Practical Offshore Structural Design Workshop (cont'd) Design a Fixed Offshore Jacket Structure • Conduct a Finite Element Anal (FEA) on an Offshore Component •Case Study Review and Group Discussion1345 - 1400Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 - 1415POST-TEST 1415 - 1430		
1230 1300Smart Sensors for Real-Time Structural Monitoring • IoT-Based Condit Monitoring for Offshore Platforms • AI and Machine Learning for Structure Data Analysis • Future Trends in Offshore Structural Monitoring1300- 1330Case Studies in Offshore Structural Design Offshore Jacket Platform Design Case Study • FPSO and Semi-Submers Platform • Best Practices in Offshore Structural Maintenance1330 - 1345Practical Offshore Structural Design Workshop (cont'd) Design a Fixed Offshore Jacket Structure • Conduct a Finite Element Anal (FEA) on an Offshore Component •Case Study Review and Group Discussion1345 - 1400Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 - 1415POST-TEST1415 - 1430Presentation of Course Certificates	1215 - 1230	
1230 1300Monitoring for Offshore Platforms • AI and Machine Learning for Structure Data Analysis • Future Trends in Offshore Structural Monitoring1300-1330Case Studies in Offshore Structural Design Offshore Jacket Platform Design Case Study • FPSO and Semi-Submers Platform • Best Practices in Offshore Structural Maintenance1330-1345Practical Offshore Structural Design Workshop (cont'd) Design a Fixed Offshore Jacket Structure • Conduct a Finite Element Anal (FEA) on an Offshore Component •Case Study Review and Group Discussion1345 - 1400Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 - 1415POST-TEST1415 - 1430Presentation of Course Certificates		Offshore Structural Health Monitoring (SHM) and IoT Applications
1230 1300Monitoring for Offshore Platforms • AI and Machine Learning for Structure Data Analysis • Future Trends in Offshore Structural Monitoring1300-1330Case Studies in Offshore Structural Design Offshore Jacket Platform Design Case Study • FPSO and Semi-Submers Platform • Best Practices in Offshore Structural Maintenance1330-1345Practical Offshore Structural Design Workshop (cont'd) Design a Fixed Offshore Jacket Structure • Conduct a Finite Element Anal (FEA) on an Offshore Component •Case Study Review and Group Discussion1345 - 1400Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 - 1415POST-TEST1415 - 1430Presentation of Course Certificates	1000 1000	Smart Sensors for Real-Time Structural Monitoring • IoT-Based Condition
Data AnalysisFuture Trends in Offshore Structural Monitoring1300-1330Case Studies in Offshore Structural Design Offshore Jacket Platform Design Case Study• FPSO and Semi-Submers Platform • Best Practices in Offshore Structural Maintenance1330-1345Practical Offshore Structural Design Workshop (cont'd) Design a Fixed Offshore Platform Using API 2A Standards (FEA) on an Offshore Component •Case Study Review and Group Discussion1345 - 1400Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 - 1415POST-TEST1415 - 1430Presentation of Course Certificates	1230 1300	
1300-1330Case Studies in Offshore Structural Design Offshore Jacket Platform Design Case Study • FPSO and Semi-Submers Platform • Best Practices in Offshore Structural Maintenance1330 -1345Practical Offshore Structural Design Workshop (cont'd) Design a Fixed Offshore Platform Using API 2A Standards • Perform a L Analysis for an Offshore Jacket Structure • Conduct a Finite Element Anal (FEA) on an Offshore Component •Case Study Review and Group Discussion1345 - 1400Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 - 1415POST-TEST1415 - 1430Presentation of Course Certificates		
Offshore Jacket Platform Design Case Study• FPSO and Semi-SubmersPlatform• Best Practices in Offshore Structural MaintenancePractical Offshore Structural Design Workshop (cont'd)Design a Fixed Offshore Platform Using API 2A Standards• Perform a LAnalysis for an Offshore Jacket Structure• Conduct a Finite Element Analy(FEA) on an Offshore Component•Case Study Review and Group Discussion1345 – 1400Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 – 1415POST-TEST1415 – 1430Presentation of Course Certificates	1200 1220	
Platform • Best Practices in Offshore Structural Maintenance1330 -1345Practical Offshore Structural Design Workshop (cont'd)1330 -1345Design a Fixed Offshore Platform Using API 2A Standards • Perform a L Analysis for an Offshore Jacket Structure • Conduct a Finite Element Anal (FEA) on an Offshore Component •Case Study Review and Group Discussion1345 - 1400Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 - 1415POST-TEST1415 - 1430Presentation of Course Certificates	1300-1330	Offshore Jacket Platform Design Case Study • FPSO and Semi-Submersible
Practical Offshore Structural Design Workshop (cont'd)1330 -1345Design a Fixed Offshore Platform Using API 2A Standards • Perform a L Analysis for an Offshore Jacket Structure • Conduct a Finite Element Anal (FEA) on an Offshore Component •Case Study Review and Group Discussion1345 - 1400Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 - 1415POST-TEST1415 - 1430Presentation of Course Certificates		
1330-1343Analysis for an Offshore Jacket Structure • Conduct a Finite Element Analysis (FEA) on an Offshore Component •Case Study Review and Group Discussion1345 - 1400Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 - 1415POST-TEST1415 - 1430Presentation of Course Certificates		, , ,
1330-1343Analysis for an Offshore Jacket Structure • Conduct a Finite Element Analysis (FEA) on an Offshore Component •Case Study Review and Group Discussion1345 - 1400Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 - 1415POST-TEST1415 - 1430Presentation of Course Certificates	1000 1015	Design a Fixed Offshore Platform Using API 2A Standards • Perform a Load
 (FEA) on an Offshore Component •Case Study Review and Group Discussion Course Conclusion 1345 – 1400 Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course 1400 – 1415 POST-TEST 1415 – 1430 Presentation of Course Certificates 	1330 -1345	Analysis for an Offshore Jacket Structure • Conduct a Finite Element Analysis
Course Conclusion1345 – 1400Using this Course Overview, the Instructor(s) will Brief Participants about Course Topics that were Covered During the Course1400 – 1415 POST-TEST 1415 – 1430Presentation of Course Certificates		(FEA) on an Offshore Component •Case Study Review and Group Discussions
Course Topics that were Covered During the Course1400 – 1415 POST-TEST 1415 – 1430Presentation of Course Certificates	1345 - 1400	Course Conclusion
1400 - 1415 POST-TEST 1415 - 1430Presentation of Course Certificates		Using this Course Overview, the Instructor(s) will Brief Participants about the
1415 – 1430 Presentation of Course Certificates		Course Topics that were Covered During the Course
	1400 – 1415	POST-TEST
	1415 - 1430	Presentation of Course Certificates
1430 Lunch & End of Course	1430	Lunch & End of Course


OE0094 - Page 8 of 9

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "Offshore Structural Analysis Computer System (SACS[®])" simulator.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

OE0094 - Page 9 of 9

