COURSE OVERVIEW TE0278 Water Network Operations Advanced Knowledge

Course Title

Water Network Operations Advanced Knowledge

Course Date/Venue

November 18-22, 2024/Dalma Meeting Room, Millennium Downtown Abu Dhabi, Abu Dhabi, UAE

Course Reference

TE0278

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course various practical includes sessions exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Advanced Operations. Water Network It covers components and layout of water distribution systems; the various water sources and strategies for managing supply; the hydraulics and fluid dynamics, water quality standards, monitoring and sensing technologies and challenges in water network operations; the key considerations in the design of efficient and resilient water networks; and the advanced hydraulic modelling.

Further, the course will also discuss the GIS applications in water networks and asset management and capital planning; the demand forecasting and management and ways to reduce energy consumption in water networks; the routine maintenance strategies, advanced leak detection and repair and pressure management and control; utilizing SCADA systems for real-time monitoring and control; and effective strategies for handling water network emergencies.

During this interactive course, participants will learn the green practices in water network maintenance and operations; the water regulations and compliance and health and safety in water operations; the risk management and mitigation, water treatment processes and customer service and communication; protecting water infrastructure from cyber threats and the new technologies and methodologies in the field; how climate change affects water supply and distribution; the interdependence between water and energy systems; the smart technologies in water distribution; and building resilience into water networks against natural and man-made disasters.

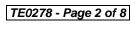
Course Objectives

Upon the successful completion of this course, each participant will be able to:-

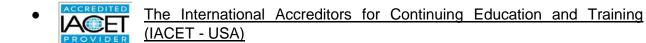
- Apply and gain an advanced knowledge on water network operations
- Discuss the components and layout of water distribution systems
- Identify various water sources and apply strategies for managing supply
- Recognize hydraulics and fluid dynamics, water quality standards, monitoring and sensing technologies and challenges in water network operations
- Explain the key considerations in the design of efficient and resilient water networks
- Illustrate advanced hydraulic modelling, GIS applications in water networks and asset management and capital planning
- Employ demand forecasting and management and ways to reduce energy consumption in water networks
- Apply routine maintenance strategies, advanced leak detection and repair and pressure management and control
- Utilize SCADA systems for real-time monitoring and control and apply effective strategies for handling water network emergencies
- Implement green practices in water network maintenance and operations
- Discuss water regulations and compliance and health and safety in water operations
- Employ risk management and mitigation, water treatment processes and customer service and communication
- Protect water infrastructure from cyber threats and explore new technologies and methodologies in the field
- Explain how climate change affects water supply and distribution and examine the interdependence between water and energy systems
- Implement smart technologies in water distribution and build resilience into water networks against natural and man-made disasters

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a Tablet PC.



Who Should Attend


This course provides an overview of all significant aspects and considerations of advanced water network operations for water network operators, water quality specialists, project managers, asset managers, water engineers and superintendents.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

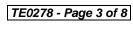
Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.



Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Kyle Bester is a Senior Water Engineer with extensive years of practical experience within the Oil & Gas, Power & Water Utilities and other Energy sectors. His expertise includes Water Reservoir, Water Tanks, Water Pumping Station, Water Distribution System, Water Network System, Water Pipes & Fittings, Water Hydraulic Modelling, Water Storage Reservoir, Reservoirs & Pumping Stations Design & Operation, Pumping Systems, Interconnecting Pipelines, Water Network Hydraulic Simulation Modelling, Water

Supply Design, Water Balance Modelling, Water Distribution Network, Water Network System Analysis, Water Forecasts Demand, Water Pipelines Materials & Fittings, Water Network System Design, Pump Houses & Booster Pumping Stations, Potable Water Transmission, Water Distribution Network, Districts Meters Areas (DMAs), Water Supply & Desalination Plants Rehabilitation, Water Reservoirs & Pumping Stations, Water Network System Extension, Water Network System Replacement & Upgrade, Water Networks Optimization, Water Supply & Distribution Systems Efficiency & Effectiveness, Pipe Materials & Fittings, Service Reservoir Design & Operation, Pipes & Fittings, Water Network System Design & Operation, Supply Water Network Rehabilitation, Water Loss Reduction, Main Water System Construction, Main Water Line Construction, Transmission & Distribution Pipelines, Water Distribution Design & Modelling, Water Supply System, Oilfield Water Treatment, Best Practice in Sewage & Industrial Wastewater Treatment & Environmental Protection, Water Distribution Design & Modelling, Desilting, Treating & Handling Oily Water, Water Chemistry for Power Plant, Water Sector Orientation, Environmental Impact Assessment (EIA), Potable Water, Reverse Osmosis Treatment Technology and Chlorination System, Well Inventory, Monitoring & Conservation, Qualitative Analysis of Soil & Ground Water, Water Networking, Hydraulic Modelling Systems, Pumping Stations, Centrifugal Pumps, Pipelines & Pumping, Water Reservoirs, Water Storage Tanks, Extended Activated Sludge Treatment, Sewage & Industrial Wastewater Treatment & Environmental Protection, Supervising & Monitoring Sewage Works, Water Desalination Technologies, Water Distribution & Pump Station, Best Water Equipment Selection & Inspection, Hydraulic Modelling for Water Network Design, Water Utility Industry, Water Desalination Technologies & New Development, Water Hydrology, Water Conveyors, Water Networks Rehabilitation. He is currently the **Part Owner & Manager** of Extreme Water SA wherein he manages. re-designed and commissioned a water and wastewater treatment plants.

During his career life, Mr. Bester has gained his practical and field experience through his various significant positions and dedication as the Project Manager, Asset Manager, Manager, Water Engineer, Supervisor, Team Leader, Analyst, Process Technician, Landscape Designer and Senior Instructor/Trainer for various international companies, infrastructures, water and wastewater treatment plants from New Zealand, UK, Samoa, Zimbabwe and South Africa, just to name a few.

Mr. Bester holds a Diploma in Wastewater Treatment and a National Certificate in Wastewater & Water Treatment. Further, he is a Certified Instructor/Trainer, an Approved Chemical Handler and has delivered numerous courses, trainings, conferences, seminars and workshops internationally.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

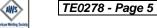
Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Monday, 18th of November 2024 Dav 1:

Day 1.	Monday, 16 Of November 2024
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Overview of Water Networks: Understanding the Components & Layout of
0030 - 0930	Water Distribution Systems
0930 - 0945	Break
0045 1020	Water Sources & Supply Management: Exploration of Various Water
0945 – 1030	Sources & Strategies for Managing Supply
1020 1120	Hydraulics & Fluid Dynamics: Basic Principles that Govern Water Flow in
1030 – 1130	Pipes & Network Systems
1130 - 1215	Water Quality Standards: Introduction to Water Quality Parameters &
1130 - 1213	Regulatory Standards
1215 – 1230	Break
1230 - 1330	Monitoring & Sensing Technologies: Overview of Technologies Used for
	Water Quality & Flow Monitoring
1330 - 1420	Challenges in Water Network Operations: Discussion on Common
	Operational Challenges & Their Impacts
1420 – 1430	Recap
1430	Lunch & End of Day One

Dav 2: Tuesday, 19th of November 2024


<u> </u>	raceaay, ie of iterefiber 2021
0730 - 0830	Water Network Design Principles: Key Considerations in the Design of
	Efficient & Resilient Water Networks
0830 - 0930	Advanced Hydraulic Modelling : Techniques for Simulating Water Flow &
	Pressure in Network Models
0930 - 0945	Break
0945 – 1100	GIS Applications in Water Networks: Using Geographic Information
	Systems for Mapping & Management
1100 - 1215	Asset Management & Capital Planning: Strategies for Long-Term Asset
	Management & Infrastructure Investment

1215 – 1230	Break
1230 - 1330	Demand Forecasting & Management: Methods for Predicting Water
	Demand & Managing Supply Accordingly
1330 - 1420	Energy Efficiency in Water Distribution: Exploring Ways to Reduce Energy
	Consumption in Water Networks
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3:	Wed	dnes	day,	20 th	of	Noven	1be	r 2	024
	D		3.4	• •		0.	•	•	D1

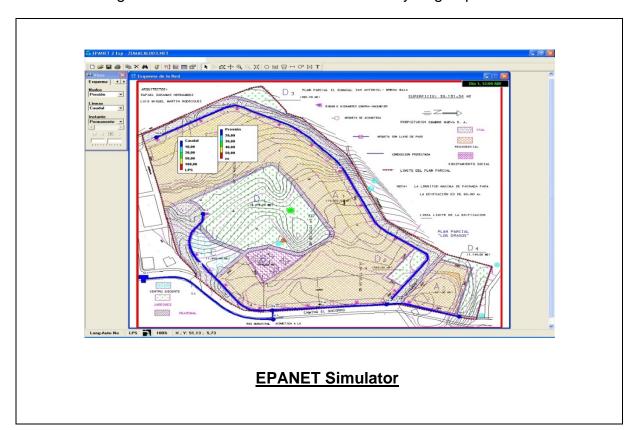
wednesday, 20" of November 2024
Routine Maintenance Strategies: Planning & Execution of Maintenance
Activities to Ensure Network Reliability
Advanced Leak Detection & Repair: Technologies & Methodologies for
Detecting & Repairing Leaks
Break
Pressure Management & Control: Techniques for Optimizing Network
Pressure to Reduce Leaks & Bursts
SCADA Systems in Water Networks: Utilizing SCADA Systems for Real-
Time Monitoring & Control
Break
Incident Management & Response: Effective Strategies for Handling Water
Network Emergencies
Sustainable Practices in Operations: Implementing Green Practices in
Water Network Maintenance & Operations
Recap
Lunch & End of Day Three

Dav 4: Thursday, 21st of November 2024

Day 4.	Thursday, 21 Or November 2024
0730 - 0830	Water Regulations & Compliance: Overview of Regulatory Framework
	Governing Water Networks
0830 - 0930	Health & Safety in Water Operations: Ensuring Safety of Staff & the
	Public in Water Network Operations
0930 - 0945	Break
0945 – 1100	Risk Management & Mitigation: Identifying & Mitigating Risks in Water
	Network Operations
1100 1215	Water Treatment Processes: Understanding the Processes Involved in Water
1100 – 1215	Treatment & Distribution
1215 – 1230	Break
1230 - 1330	Customer Service & Communication: Strategies for Effective Customer
	Engagement & Communication
1330 - 1420	Cybersecurity in Water Networks: Protecting Water Infrastructure from
	Cyber Threats
1420 – 1430	Recap
1430	Lunch & End of Day Four

Day 5: Friday, 22nd of November 2024

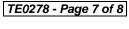
Day J.	Triuay, 22 Or November 2024
0730 - 0830	Innovations in Water Network Operations : Exploring New Technologies &
	Methodologies in the Field
0830 - 0930	Climate Change Impacts on Water Networks: Understanding How Climate
	Change Affects Water Supply & Distribution
0930 - 0945	Break
0945 – 1100	Water-Energy Nexus: Examining the Interdependence Between Water
	&Energy Systems

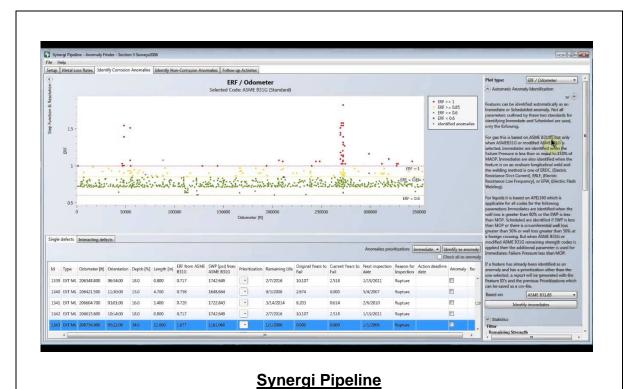


1100 – 1200	Smart Water Networks: Implementation of Smart Technologies in Water
	Distribution
1200 - 1215	Break
1215 – 1345	Water Network Resilience Planning: Building Resilience into Water
	Networks Against Natural & Man-Made Disasters
1345 - 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the latest revision of "EPANET" and "Synergi Pipeline" simulators.





<u>Course Coordinator</u>
Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>

