

COURSE OVERVIEW HE0563 Energy and Climate Change

Course Title

Energy and Climate Change

Course Date/Venue

July 28-August 01, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

HE0563

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This course is designed to provide participants with a detailed and up-to-date overview of Climate Modeling and Climate Change. It covers the difference between climate and weather and the factors controlling Earth's climate system; the greenhouse effect and global warming; the difference between natural versus anthropogenic climate change; the climate change evidence and observations; the impacts of climate change on petroleum industry; the climate policy and international agreements, climate modelling and general circulation models (GCMs); and the regional climate models (RCMs) and downscaling including data sources and climate model inputs.

During this interactive course, participants will learn the uncertainty in climate modelling and physical risks of climate change to oil and gas industry; the transition risks, climate change and energy transition; the climate change impact on oil exploration and production; the climate-induced risks to supply chain and logistics; the strategies for climate adaptation in oil and gas; the carbon capture, utilization, and storage (CCUS); the methane emission reduction strategies; the renewable energy integration in petroleum sector; the hydrogen economy and the future of oil; the role of digitalization in climate mitigation; and the climate finance, carbon markets and ESG and sustainability.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

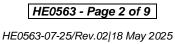
- Apply and gain an in-depth knowledge on climate modeling and climate change
- Discuss the difference between climate and weather and the factors controlling Earth's climate system
- Identify the greenhouse effect and global warming and differentiate natural versus anthropogenic climate change
- Assess climate change evidence and observations and discuss the impacts of climate change on petroleum industry
- Review climate policy and international agreements, climate modelling and general circulation models (GCMs)
- Discuss regional climate models (RCMs) and downscaling including data sources and climate model inputs
- Describe uncertainty in climate modelling and physical risks of climate change to oil and gas industry
- Discuss transition risks, climate change and energy transition and climate change impact on oil exploration and production
- Recognize climate-induced risks to supply chain and logistics and apply strategies for climate adaptation in oil and gas
- Explain carbon capture, utilization, and storage (CCUS) and apply methane emission reduction strategies
- Apply renewable energy integration in petroleum sector and discuss the hydrogen economy and the future of oil
- Define the role of digitalization in climate mitigation and discuss climate finance, carbon markets and ESG and sustainability

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of climate modeling and climate change for professionals and researchers, government and policy makers, industry and business leaders, non-governmental organizations (NGOS) and activist's and other technical staff.


Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Dimitry Rovas, CEng, MSc, PMI-PMP, SMRP-CMRP is a Senior HSSE (Health, Safety, Security & Environmental Management System) Consultant with extensive industrial experience in Oil, Gas, Power and Utilities industries. His expertise include Industrial Security Planning & Operations, Asset Protection, Security Investigations & Inspection, Criminal Evidence & Crime Scene Control, Industrial Plant Security Management, Fire & Loss Prevention, Emergency Management, Fire Alarm, Fire Fighting

System, Fire Rated Insulation Materials, Risk Assessment, Hazardous Materials (HAZMAT), Fire Protection, Fire Precautions, Incidents & Accidents Reporting, Fire and Explosion Risk Assessment (FERA), Security Operations Planning, Security Crisis Management, Strategic Security Management, Security Survey Design, Information Technology and Security, Security Threat Identification, Risk Analysis Evaluation & Management, API-780: Security Risk Assessment Methodology for the Petrochemical Industries, Safety, Security & Environmental Codes of Practice, Power System Security Assessment, Hazard Communication (HAZCOM), Hazard Recognition & Assessment, & Managing Risk in Process Plant, Risk Assessment & Hazard Identification, Risk Control, Cryogens, MSDS, Liquified Natural Gas, Hazard Monitoring Techniques, Environmental Pollution Prevention, Hazardous Classification, Packaging & Labelling, Chemical Spill Clean Up, Risk Assessments, Safety & Emergency Plans, Working at Heights, Firefighting, Rescue & Operation, Fall Protection, Confined Space Entry, Construction Health & Safety, HSSE Principles & Practices, HSE Quantitative Risk Assessment (QRA), Root Cause Analysis & Techniques, Hazardous Materials & Chemicals Handling, Chemical Spills, Safety Precaution & Response Action Plan, PSM, PHA, HAZOP, HAZID, Hazard & Risk Assessment, Task Risk Assessment (TRA), Incident Command, Accident & Incident Investigation, Emergency Response Procedures, Job Safety Analysis (JSA), Behavioural Based Safety (BBS), Work Permit & First Aid, Emergency Response, H2S, ERP Preparation, Project HSE Management System, Health & Hygiene Inspection, PTW Control, Process Modules Fire & Gas Commissioning, Ergonomics, Lockout/Tagout, Fire Safety & Protection and Spill Prevention & Control. He is currently the **Project Manager** wherein he is managing, directing and controlling all activities and functions associated with the domestic heating/cooling facilities projects.

During his life career, Mr. Rovas has gained his practical and field experience through his various significant positions and dedication as the EPC Project Manager, Field Engineer, Preventive Maintenance Engineer, Researcher, Instructor/Trainer, Telecom Consultant and Consultant from various companies such as the Podaras Engineering Studies, Metka and Diadikasia, S.A., Hellenic Petroleum Oil Refinery and COSMOTE.

Mr. Rovas has Master's degrees in Energy Production & Management and Mechanical Engineering from the National Technical University of Athens (NTUA), Greece. Further, he is a Certified Instructor/Trainer, a Certified Maintenance and Reliability Professional (CMRP) from the Society of Maintenance & Reliability Professionals (SMRP), Certified Project Management Professional (PMI-PMP), Certified Six Sigma Black Belt, Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM), Certified Construction Projects Contractor, Certified Energy Auditor and a Chartered Engineer. Moreover, he is an active member of American Society for Quality, Project Management Institute (PMI), Body of Certified Energy Auditors and Technical Chamber of Greece. He has further received various recognition and awards and delivered numerous trainings, seminars, courses, workshops and conferences internationally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Monday, 28th of July 2025

<u> </u>	menday, 20 en eary 2020
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Introduction to Climate Science
0830 - 0930	Definition and Scope of Climate Science • Difference Between Climate and Weather • Factors Controlling Earth's Climate System • Role of Oceans and
	Atmosphere in Climate Regulation
0930 - 0945	Break
	The Greenhouse Effect & Global Warming
0945 - 1030	Mechanism of the Greenhouse Effect • Key Greenhouse Gases (CO ₂ , CH ₄ ,
0343 - 1030	N_2O , Water Vapor) • Sources and Sinks of Greenhouse Gases • Impacts of
	Enhanced Greenhouse Effect on Global Temperature
	Natural versus Anthropogenic Climate Change
	Natural Climate Variability (Solar Cycles, Volcanic Eruptions) • Human-
1030 – 1130	Induced Climate Change (Fossil Fuel Combustion, Deforestation) •
	Understanding Climate Feedback Loops • Industrial Contributions to Climate
	Change
	Climate Change Evidence & Observations
1130 – 1215	Global Temperature Trends Over Time • Changes in Precipitation Patterns and
1130 - 1213	Extreme Weather Events • Ice Sheet and Glacial Melting • Ocean Acidification
	and Sea Level Rise
1215 – 1230	Break
1230 – 1330	Impacts of Climate Change on Petroleum Industry
	Rising Temperatures and Their Effect on Oil and Gas Operations • Changes in
	Energy Demand and Consumption • Climate Risks to Offshore and Onshore
	Infrastructure • Regulatory Pressures for Emission Reduction in Petroleum
	Sector

1330 – 1420	Climate Policy & International Agreements The Paris Agreement and Net-Zero Targets • Role of the United Nations Framework Convention on Climate Change (UNFCCC) • Nationally Determined Contributions (NDCs) • Climate Policy and Compliance
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2:	Tuesday, 29 th of July 2025
0730 - 0830	Basics of Climate Modeling Definition and Purpose of Climate Models • Types of Climate Models
	(Conceptual, Statistical, Numerical) • Components of a Climate Model (Atmosphere, Land, Ocean, Ice) • Role of Supercomputers in Climate Simulations
	Understanding General Circulation Models (GCMs)
0830 - 0930	Structure and Resolution of GCMs • Parameterization in Climate Models • Strengths and Limitations of GCMs • Key GCMs Used by IPCC and Research Institutions
0930 - 0945	Break
0945 – 1100	Regional Climate Models (RCMs) & Downscaling Need for High-Resolution Regional Climate Models • Statistical vs. Dynamical Downscaling • Application of RCMs in Oil and Gas Operations • Case Studies of RCMs in the Middle East
	Data Sources & Climate Model Inputs
1100 – 1215	Historical Climate Data and Instrumentation • Satellite Observations and Remote Sensing in Climate Science • Role of Proxy Data (Tree Rings, Ice Cores, Sediments) • Importance of High-Quality Emission Scenarios
1215 – 1230	Break
1230 - 1330	Uncertainty in Climate Modeling Sources of Uncertainty in Climate Projections • Model Sensitivity and Climate Forcing Factors • Importance of Multi-Model Ensemble Approaches • Communication of Uncertainty in Policy Making
1330 – 1420	Case Study: Evaluating Climate Models for the Arabian Gulf Historical Climate Trends in the Arabian Gulf • Projected Temperature and Precipitation Changes • Impacts on Operations and Infrastructure • Strategies for Adaptation and Mitigation in Petroleum Industry
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Wednesday, 30th of July 2025 Day 3:

- ,	,
	Physical Risks of Climate Change to Oil & Gas Industry
	Increased Frequency of Extreme Weather Events • Rising Sea Levels and
0730 - 0830	Coastal Infrastructure Vulnerability • Higher Ambient Temperatures Affecting
	Equipment Efficiency • Changes in Water Availability for Cooling and
	Refining

	Transition Risks: Economic & Regulatory Challenges
0830 - 0930	Carbon Pricing and Financial Implications • Stricter Environmental
	Regulations and Compliance Costs • Shifts in Energy Demand and Market
	Trends • Investor and Shareholder Pressures for Sustainability
0930 - 0945	Break
	Climate Change & Energy Transition
0945 – 1100	Shift from Fossil Fuels to Renewable Energy • Role of Hydrogen and Carbon
0943 - 1100	Capture in the Oil Sector • Net-Zero Goals for Oil and Gas Companies •
	Initiatives for Low-Carbon Energy Production
	Climate Change Impact on Oil Exploration & Production
	Changing Weather Patterns Affecting Offshore Drilling • Permafrost Thawing
1100 - 1215	and Its Impact on Arctic Oil Extraction • Reservoir Management Under
	Changing Climate Conditions • Role of Enhanced Oil Recovery (EOR) in a
	Low-Carbon Future
1215 - 1230	Break
	Climate-Induced Risks to Supply Chain & Logistics
	Increased Transportation Costs Due to Weather Uncertainty • Impact on
1230 - 1330	Pipeline Integrity and Maintenance Needs • Disruptions in Global Supply
	Chains Due to Extreme Events • Need for Climate-Resilient Infrastructure in
	Oil and Gas
	Strategies for Climate Adaptation in Oil & Gas
1330 - 1420	Enhancing Infrastructure Resilience • Developing Climate-Resilient
	Workflows and Operations • Investing in Early Warning Systems for Extreme
	Events • Sustainable Water and Resource Management
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4: Thursday, 31st of July 2025

Day 4.	Thursday, 31° of July 2025
0730 - 0830	Carbon Capture, Utilization & Storage (CCUS)
	Principles and Technologies of CCUS • Large-Scale CCUS Projects in the Oil
	and Gas Industry • Cost and Efficiency Considerations • Future of CCUS in
	Achieving Net-Zero Emissions
0020 0020	Methane Emission Reduction Strategies
	Identifying Methane Leakages in Oil and Gas Operations • Technologies for
0830 – 0930	Methane Detection and Measurement • Best Practices for Methane Reduction
	Regulatory Requirements for Methane Emission Controls
0930 - 0945	Break
	Renewable Energy Integration in Petroleum Sector
0045 1100	Solar and Wind Energy in Oil Production Sites • Offshore Renewable Energy
0945 – 1100	and Hybrid Solutions • Role of Biofuels and Alternative Energy Sources •
	Renewable Energy Initiatives
1100 – 1215	Hydrogen Economy & the Future of Oil
	Hydrogen Production (Green, Blue, Grey) • Role of Hydrogen in
	Decarbonizing Oil and Gas Operations • Challenges in Hydrogen Storage and
	Transport • Potential for Hydrogen Investments
1215 - 1230	Break

1230 – 1420	Role of Digitalization in Climate Mitigation AI and Machine Learning for Climate Prediction • Blockchain for Carbon Accounting and Trading • IoT Sensors for Real-Time Emission Monitoring • Automation for Reducing Operational Energy Consumption
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5:	Friday, 01st of August 2025
0730 - 0930	Climate Finance & Carbon Markets
	Understanding Carbon Pricing and Cap-and-Trade Mechanisms • Role of
	Carbon Offsetting in Oil and Gas Industry • Green Bonds and Sustainable
	Investment Strategies • Climate-Related Financial Disclosures
0930 - 0945	Break
	Future Climate Scenarios & Projections
0945 - 1100	RCP and SSP Scenarios for Global Warming • Climate Tipping Points and
0943 - 1100	Their Economic Implications • Predicting Climate Change Impact on Oil
	Markets • Planning for a Low-Carbon Future
	ESG & Sustainability
1100 – 1215	Environmental, Social and Governance (ESG) Criteria • Measuring and
1100 - 1213	Reporting Carbon Footprint • Sustainability Goals and Long-Term Business
	Strategy • Stakeholder Engagement in Climate Action
1215 - 1230	Break
	Building a Climate Action Roadmap
1230 - 1345	Identifying Key Risks and Opportunities • Developing Industry-Specific
	Mitigation Strategies • Setting Measurable Climate Goals • Implementing
	Monitoring and Reporting Mechanisms
1330 – 1345	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about
	Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

