

<u>COURSE OVERVIEW RE0170</u> Failure Modes, Effects & Criticality Analysis (FMECA)

Course Title

Failure Modes, Effects & Criticality Analysis (FMECA)

Course Date/Venue

August 18-22, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Failure Modes, Effects & Criticality Analysis (FMECA). It covers the reliability-centered maintenance (RCM), failure modes and effects analysis (FMEA) and FMECA methodology and standards; the types of failures in power equipment, system hierarchies and functional breakdown; the team formation, FMECA planning, failure modes and assessing failure effects; the severity ratings, occurrence ratings and estimation techniques; and the detection ratings and control measures, calculating risk priority number (RPN), criticality analysis basics and quantitative criticality assessment.

During this interactive course, participants will learn the risk matrix and risk assessment models, ranking and prioritizing actions and linking FMECA with maintenance strategy; the FMECA reporting and documentation, FMECA for electrical systems, mechanical and rotating equipment and integration with safety and regulatory standards; the human errors as failure modes, task analysis and error likelihood, control room interface failures and training and procedural improvement; and when to use FMECA versus RCA, synergy between both techniques and using FMECA results to support RCA.

RE0170- Page 1 of 8

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth know ledge on failure modes, effects & criticality analysis (FMECA)
- Discuss reliability-centered maintenance (RCM), failure modes and effects analysis (FMEA) and FMECA methodology and standards
- Identify the types of failures in power equipment, system hierarchies and functional breakdown
- Describe team formation and FMECA planning, identify failure modes and assess failure effects
- Assign severity ratings and apply occurrence ratings and estimation techniques
- Carryout detection ratings and control measures including calculating risk priority number (RPN), criticality analysis basics and quantitative criticality assessment
- Illustrate risk matrix and risk assessment models, ranking and prioritizing actions and linking FMECA with maintenance strategy
- Apply FMECA reporting and documentation, FMECA for electrical systems, mechanical and rotating equipment and integration with safety and regulatory standards
- Identify human errors as failure modes and carryout task analysis and error likelihood, control room interface failures and training and procedural improvement
- Recognize when to use FMECA versus RCA, synergy between both techniques and using FMECA results to support RCA

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of failure modes, effects and criticality analysis (FMECA) for reliability engineers, quality engineers, design engineers, maintenance engineers, systems engineers, project managers/product managers, manufacturing and process engineers, quality assurance (QA)/quality control (QC) professionals, maintenance and asset managers, operations and production managers and other technical staff.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

RE0170- Page 2 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Haward's Certificates are accredited by the following international accreditation organizations:

• BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• ACCREDITED

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

RE0170- Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Tony Dimitry, PhD, MSc, BSc, is a Senior Mechanical & Maintenance Engineer with over 30 years of industrial experience within the Petroleum, Oil & Gas, Petrochemical, Nuclear & Power industries. His expertise covers Revising Engineering Drawings, Engineering Drawings & Diagrams, AutoCAD & GIS Support, Retailed Engineering Drawings, Codes & Standards, Mechanical Diagrams Interpretation, Reading Engineering Drawings, Process &

Project Drawings, Engineering Drawings Interpretation, Piping Layouts & Isometrics, P&ID Reading & Interpretation, Glass Reinforced Epoxy (GRE), Glass Reinforced Pipes (GRP), Glass Reinforced Vent (GRV), Mechanical Pipe Fittings, Flange Joint Assembly, Adhesive Bond Lamination, Butt Jointing, Joint & Spool Production, Isometric Drawings, Flange Assembly Method, Fabrication & Jointing, Jointing & Spool Fabrication, Pipe Cuttings, Flange Bolt Tightening Sequence, Hydro Testing, Failure Analysis Methodologies, Machinery Root Cause Failure Analysis (RCFA), Preventive Maintenance & Condition Monitoring, Reliability Centred Maintenance (RCM), Risk Based Inspection (RBI), Root Cause Analysis (RCA), Planning & Managing Plant Turnaround, Scheduling Maintenance, Data Archive Maintenance, Master Milestone Schedule (MMS), Piping & Mechanical Vibration Analysis, Preventive & Predictive Maintenance (PPM) Maintenance, Condition Based Monitoring (CBM), Risk Based Assessment (RBA), Planning & Preventive Maintenance, Maintenance Management (Preventive, Predictive, Breakdown), Reliability Management, Rotating Equipment, Scheduling & Cost Control, Maximo Foundation, Maximo Managing Work, Asset Management Best Practices, Resource Management, Inventory Set-up & Management, Work Management, Automatic & Work Flows & Escalations, Vibration Analysis, Heat Exchanger, Siemens, Gas & Steam Turbine Maintenance, Pumps & Compressors, Turbo-Expanders, Fractional Columns, Boilers, Cryogenic Pumps for LNG. Electromechanical Maintenance, Machinery Alignment, Lubrication Technology, Bearing & Rotary Machine, Blower & Fan, Shaft Repair, Safety Relief Valves, Pipelines, Piping, Pressure Vessels, Process Equipment, Diesel Engine & Crane Maintenance, Tanks & Tank Farms, Pneumatic System, Static Equipment, FMEA, Corrosion, Metallurgy, Thermal and Electrical Modelling of Battery Problems. He is also well-versed in various simulators such as i-Learn Vibration, AutoCAD, Word Access, Aspen One, Fortran, VB, C ANSYS, ABAQUS, DYNA3D, Ceasar, Caepipe, MS Project, Primavera, MS Excel, Maximo, Automation Studio and SAP. Currently, he is the **Maintenance Manager** of the PPC Incorporation wherein he is responsible for the maintenance and upgrading of all Power Station components.

During his career life, Dr. Dimitry held a significant position such as the **Operations Engineers**, **Technical Trainer**, **HSE Contracts Engineer**, **Boilers Section Engineer**, **Senior Engineer**, **Trainee Mechanical Engineer**, **Engineer**, **Turbines Section Head**, **Professor**, **Lecturer/Instructor** and **Teaching Assistant** from various multinational companies like Chloride Silent Power Ltd., **Technical University of Crete**, **National Nuclear Corporation**, **UMIST Aliveri Power Station** and **HFO Fired Power Station**.

Dr. Dimitry has PhD, Master and Bachelor degrees in Mechanical Engineering from the Victory University of Manchester and the University of Newcastle, UK respectively. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and an associate member of the American Society of Mechanical Engineers (ASME) and Institution of Mechanical Engineers (IMechE). He has further delivered various trainings, seminars, courses, workshops and conferences internationally.

RE0170- Page 4 of 8

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Monday, 18 th of August 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Overview of Reliability-Centered Maintenance (RCM) Definition and Objectives of RCM • Importance of System Reliability in Power Networks • Comparison Between RCM and Traditional Maintenance • RCM Process Flow and Integration with FMECA
0930 - 0945	Break
0945 - 1030	Basic of Failure Modes & Effects Analysis (FMEA) What Is FMEA and its Purpose • Basic Terminologies (Failure Mode, Effects, Severity, etc.) • FMEA versus FMECA • Historical Development and Applications in the Power Sector
1030 - 1130	FMECA Methodology & Standards MIL-STD-1629A and IEC 60812 Overview • Step-by-Step Methodology • Documentation and Reporting Structure • Roles and Responsibilities in the FMECA Process
1130 – 1215	Types of Failures in Power Equipment Electrical Failure Modes (Transformers, Breakers, Relays) • Mechanical Failure Modes (Pumps, Motors, Turbines) • Environmental and Operational Failures • Hidden and Intermittent Failures
1215 – 1230	Break
1230 - 1330	System Hierarchies & Functional Breakdown System, Subsystem and Component Level Definitions • Functional Decomposition Techniques • Identifying Boundaries and Interfaces • Use of Block Diagrams and P&IDs

RE0170- Page 5 of 8

	Team Formation & FMECA Planning
1330 - 1420	Assembling a Multidisciplinary FMECA Team • Planning and Scheduling
	FMECA Studies • Defining Scope and System Boundaries • Data Gathering
	and Historical Failure Records
	Recan
	Using this Course Overview the Instructor(s) will Brief Participants about the
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1420	
1430	Lunch & Ena of Day One
Day 2:	Tuesday, 19 th of August 2025
-	Identifying Failure Modes
0700 0000	Failure Modes from Functional Block Diagrams • Types of Failure Causes
0730 - 0830	(Design, Material, Operational) • Use of Fault Trees and Historical Data •
	<i>Case Examples in Substations and Transmission Lines</i>
	Assessing Failure Effects
0830 - 0930	Local versus Higher-Level Effects • System Safety and Performance Impacts •
0050 - 0550	Rick of Cacading Eailures • Effect of Eailures on Control Sustams
0020 0045	Risk of Cusculing Fullures • Effect of Fullures on Control Systems
0930 - 0943	Dieuk Accientica Computing Deting
	Assigning Severity Ratings
0945 - 1100	Severity Scoring Criteria • Impact on Safety, Environment, Service and Cost •
	Scoring Tables and Justifications • Sector-Specific Severity Considerations for
	Power Systems
	Occurrence Ratings & Estimation Techniques
1100 1215	Failure Rate Sources (Field Data, OEM Specs, MTBF) • Assigning Likelihood
1100 - 1213	of Failure • Use of Weibull Analysis and Reliability Data • Examples from
	Circuit Breakers and Switchgear
1215 - 1230	Break
	Detection Ratings & Control Measures
	Assessing Existing Controls and Diagnostics • Instrumentation and Condition
1230 - 1330	Monitoring Tools • Scoring Detection Effectiveness • Early Warning Systems
	in Porper Plants
	Calculating Risk Priority Number (RPN)
	Formula: RDN = Separity × Occurrence × Detection • Thresholds and
1330 - 1420	Formula. RFIN - Severily ~ Occurrence ~ Delection • Intestidius and
	DDL Calculation of RPN Examples from Transformers, Relays of Group Exercise.
	REIN Culculution for Sumple Systems
	Kecap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
1120 - 1400	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two
	Wednesday, 20th of Avguet 2025
Day 3:	Criticality Analysis Pasias
	Uniculty Analysis Dusies
0730 – 0830	Volut is Criticality Analysis • Quantitative versus Quantitative Approaches •
	Linking to Asset Criticality in TKAINSCO Systems • Industry Practices and
	100ls
0830 – 0930	Quantitative Criticality Assessment
	Failure Rate (λ), Operating Time (t) and Exposure • Criticality Index (CI) and
	Formulas • Importance Factor and Consequence Modeling • Using MTTR,
	MTBF in Power Applications

Break

0930 - 0945

RE0170- Page 6 of 8

0945 - 1100 1100 - 1215	Risk Matrix & Risk Assessment Models
	Creating and Using a Risk Matrix • Mapping RPNs to Risk Categories •
	Visualization and Stakeholder Communication • Case Studies: Risk Matrix for
	Power Substations
	Ranking & Prioritizing Actions
	Criticality Thresholds • Action Prioritization for High RPN Items •
	Developing Corrective Actions • Integration with Asset Management
1215 – 1230	Break
	Linking FMECA with Maintenance Strategy
1220 1220	Preventive versus Predictive Maintenance • Updating Maintenance Tasks
1230 - 1330	Based on FMECA • Maintenance Optimization in Substations • Aligning with
	ISO 55000 Principles
1330 - 1420	FMECA Reporting & Documentation
	Reporting Templates and Formats • Tabular versus Graphical Presentations •
	Lessons Learned and Follow-up Plans • Communicating Findings to Upper
	Management
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4:	Thursday, 21 st of August 2025
0730 - 0830	Software Tools for FMECA
	Overview of Tools: Xfmea, ReliaSoft, PTC Windchill • Setting up a Project •
	Simulation and Data Import Features • Exporting Reports and Charts
	FMECA for Electrical Systems
0830 - 0930	Application to Protection Systems (Relays, CTs, VTs) • High Voltage
	Switchgear Case Study • FMECA for SCADA & Automation Controls • Risk
	Mitigation in Smart Grid Systems
0930 - 0945	Break
	FMECA for Mechanical & Rotating Equipment
0045 1100	Case Study: Cooling Pumps, Motors, Compressors • Common Mechanical
0945 - 1100	Failure Modes • Vibration and Thermographic Insights • Maintenance
	Alignment
	Integration with Safety & Regulatory Standards
1100 1215	IEC 61508 / IEC 61511 and SIL Correlation • FANR and National Safety
1100 - 1215	Requirements • Compliance Audits and FMECA Role • Safety-Critical
	Systems and Redundancy
1215 – 1230	Break
	Human Factors in Failure Analysis
1230 - 1330	Human Errors as Failure Modes • Task Analysis and Error Likelihood •
	Control Room Interface Failures • Training and Procedural Improvement
	Root Cause Analysis (RCA) versus FMECA
1330 - 1420	When to use FMECA versus RCA • Synergy Between Both Techniques •
1330 - 1420	Using FMECA Results to Support RCA • Real Case Comparison from
	Transformer Station
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

RE0170- Page 7 of 8

Day 5:	Friday, 22 nd of August 2025
0730 – 0930	Group Exercise: FMECA for a Power Substation
	Functional Breakdown of System • Identifying Failure Modes and Effects •
	Assigning Severity, Occurrence, Detection • Calculating RPN and Proposing
	Actions
0930 - 0945	Break
0945 - 1100	Case Study 1: Transmission Line Failure
	Real Event Review (Conductor Breakage, Lightning) • Analysis of Causes and
	Effects • Criticality Scoring • Prevention and Mitigation Strategy
1100 - 1215	Case Study 2: Transformer Protection System
	Protection Relay Malfunction • Impact on Transformer Operation • FMECA
	Matrix Development • Recommendations and Justification
1215 – 1230	Break
	Interactive Software Demo (If Available)
1230 - 1345	Running an FMECA in Commercial Software • Live Data Input and RPN
	Visualization • Reporting Output and Decision Making • Customizing
	FMECA Templates for TRANSCO
1345 – 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about a
	Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "iLearnVibration" simulator.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

RE0170- Page 8 of 8

