

COURSE OVERVIEW FE1016 Inspection, Quality Management & Checks of Pipelines, Pumps & Process Equipment

Course Title

Inspection, Quality Management & Checks of Pipelines, Pumps & Process Equipment

Course Date/Venue

September 01-05, 2025/Boardroom 2 Meeting Room, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Course Reference

FE1016

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Inspection, Quality Management & Checks of Pipelines, Pumps & Process Equipment. It covers the principles of industrial inspection, fundamentals of quality management and pipeline systems; the pumps in industrial systems, process equipment and codes, standards and regulatory compliance; the visual inspection techniques, pipeline NDT techniques and hydrostatic and pneumatic testing; the welding inspection and quality checks; the corrosion mechanisms in pipelines, pipeline quality documentation and pump performance testing; and the visual and functional inspection of pumps, pump failure analysis.

Further, the course will also discuss the seal system inspection and maintenance; the lubrication and bearing inspection and pump quality control procedures; the proper inspection of heat exchangers and pressure vessels; the storage tank inspection and quality management systems (QMS) in maintenance; the riskbased inspection (RBI) approach and fitness-for-service evaluation; the inspection reporting, management and frequency determination; the shutdown and turnaround planning, coordination with operations and safety teams; the resource and manpower allocation; and the internal versus external audits

During this interactive course, participants will learn the non-conformance detection and follow-up; the 5 Whys, Fishbone diagram and continuous improvement loops; the inspection during construction phases, material verification and traceability; and the welding and NDT coordination and turnover dossier completion.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on inspection, quality management and checks of pipelines, pumps and process equipment
- Discuss the principles of industrial inspection, fundamentals of quality management, pipeline systems,
- Recognize pumps in industrial systems, process equipment and codes, standards and regulatory compliance
- Carryout visual inspection techniques, pipeline NDT techniques, hydrostatic and pneumatic testing and welding inspection and quality checks
- Discuss corrosion mechanisms in pipelines and apply pipeline quality documentation, pump performance testing and visual and functional inspection of pumps
- Employ pump failure analysis, seal system inspection and maintenance, lubrication and bearing inspection and pump quality control procedures
- Implement proper inspection of heat exchangers and pressure vessels, storage tank inspection and quality management systems (QMS) in maintenance
- Apply risk-based inspection (RBI) approach, fitness-for-service (FFS) evaluation and inspection reporting and data management
- Inspect frequency determination, and apply shutdown and turnaround planning, coordination with operations and safety teams and resource and manpower allocation
- Differentiate internal versus external audits and carryout non-conformance detection and follow-up, 5 whys and fishbone diagram and continuous improvement loops
- Apply inspection during construction phases, material verification and traceability, welding and NDT coordination and turnover dossier completion

Who Should Attend

This course provides an overview of all significant aspects and considerations of inspection, quality management and checks of pipelines, pumps and process equipment for project managers inspection supervisors inspection engineers, maintenance engineers, pipeline engineers, process and mechanical engineers, project engineers, junior engineers , quality assurance/quality control (QA/QC) personnel, maintenance technicians, pipeline technicians and other technical staff.

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**®). The **H-STK**® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Steve Magalios, CEng, PGDip (on-going), MSc, BSc, is a Senior Mechanical & Maintenance Engineer with almost 30 years of extensive On-shore/Offshore experience in the Oil & Gas, Construction, Refinery and Petrochemical industries. His expertise widely covers in the areas of Risk Based Inspection (RBI) Methodologies, Piping & Process Equipment Design, Inspection, Maintenance RBI & FFS (ASME & API Codes), API-579/580/581: Risk-Based-Inspection (RBI), Fitness-for-Service (FFS) and Repair Practices of Pipelines, Piping, Vessels and Tanks in Refineries, Gas, Oil and Petrochemical Facilities, API 510, 570 & 653: Inspection of Stationary

Equipment, Pipeline Operation & Maintenance, Pipeline Systems, Pipeline Design & Construction, Pipeline Repair Methods, Pipeline Engineering, Pipeline Integrity Management System (PIMS), Pump Technology, Fundamentals of Pumps, Pump Selection & Installation, Centrifugal Pumps & Troubleshooting, Reciprocating & Centrifugal Compressors, Process Control Valves, Process Equipment Design, Process Equipment and Piping Systems: Application, Design and Operation, Industrial Valve Inspection & Performance Testing, Field Testing & Inspection of Industrial Valves, API-Based Valve Testing & Inspection Procedures, Troubleshooting & Repair of Failed Valves, Gate Valve Design, Field Evaluation & Testing of Gate Valves, Operational Reliability of Gate Valves in Process Systems, Butterfly Valve Operation, Valve Testing, Pressure Vessels Fabrication, Material Science & Selection, Composite Repair Materials, Material Selection & Properties, Material & Inspection Foundation, Refractory Material Design, Application, Installation & Inspection, Preventive & Predictive Maintenance, Reliability Centered Maintenance, Applied Maintenance Management, Reliability Modelling, Reliability Techniques, Reliability Design Techniques, Advanced Root Causes Analysis & Techniques, Reliability Management, Pipeline Hot Tapping, Hot Tapping Equipment, Hot Tapping Operation, Boiler Inspection & Maintenance, Boiler Systems, Boiler instrumentation & Controls, Boiler Start-up & Shutdown, Boiler Operation & Steam System Management, Pipe Cuttings, Flange Bolt Tightening Seguence, Hydro Testing, Screw Compressor, Compressor Control & Protection, Gas & Steam Turbines, Turbine Operations, Gas Turbine Technology, Valves, , API 598: Valve Inspection and Testing, Bearings & Lubrication, Advanced Machinery Dynamics, Rubber Compounding, Elastomers, Thermoplastic, Industrial Rubber Products, Rubber Manufacturing Systems, Heat Transfer, Vulcanization Methods, Welding Engineering, Fabrication & Inspection, Welding Techniques. Currently, he is the Chartered Professional Surveyor Engineer & Urban-Regional Planner wherein he is deeply involved in providing exact data, measurements and determining properly boundaries. He is also responsible in preparing and maintaining sketches, maps, reports and legal description of surveys.

During his career, Mr. Magalios has gained his expertise and thorough practical experience through challenging positions such as a Project Site Construction Manager, Supervision Head/Construction Manager, Construction Site Manager, Project Manager, Deputy PMS Manager, Head of the Public Project Inspection Field Team, Technical Consultant, Senior Consultant, Consultant/Lecturer, Construction Team Leader, Lead Pipeline Engineer, Project Construction Lead Supervising Engineer, Lead Site Engineer, Senior Site Engineer Lead Engineer, Senior Site Engineer, Mechanical Engineer, R.O.W. Coordinator, Site Representative, Supervision Head, Contractor, Client Site Representative and Acting Client Site Representative for international Companies such as the Public Gas Corporation, Penspen International Limited, Eptista Servicios de Ingeneria S.I., J/V ILF Pantec TH. Papaioannou & Co. – Emenergy Engineering, J/V Karaylannis S.A. – Intracom Constructions S.A., Ergaz Ltd., Alkyonis 7, Palaeo Faliro, Piraeus, Elpet Valkaniki S.A., Asprofos S.A., J/V Depa S.A. just to name a few.

Mr. Magalios is a Registered Chartered Engineer and has Master and Bachelor degrees in Surveying Engineering from the University of New Brunswick, Canada and the National Technical University of Athens, Greece, respectively. Further, he is currently enrolled for Post-graduate in Quality Assurance from the Hellenic Open University, Greece. He has further obtained a Level 4B Certificates in Project Management from the National & Kapodistrian University of Athens, Greece and Environmental Auditing from the Environmental Auditors Registration Association (EARA). Moreover, he is a Certified Instructor/Trainer, a Chartered Engineer of Technical Chamber of Greece and has delivered numerous trainings, workshops, seminars, courses and conferences internationally.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Monday, 01st of September 2025

Day I.	Monday, 01 of September 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Principles of Industrial Inspection Purpose & Scope of Inspection • Types of Inspection: Visual, Dimensional, NDT • Frequency & Timing of Inspections • Inspector Roles & Responsibilities
0930 - 0945	Break
0945 - 1030	Fundamentals of Quality Management Definition & Importance of Quality in Operations • ISO 9001 & QMS Overview • Key Quality Principles (PDCA, Risk-Based Thinking) • Quality Planning & Assurance in Maintenance
1030 - 1130	Overview of Pipeline Systems Pipeline Components & Layout • Materials of Construction • Pressure Ratings & Design Codes • Common Pipeline Failures & Causes
1130 – 1215	Pumps in Industrial Systems Types of Pumps (Centrifugal, Positive Displacement) • Key Components & Flow Dynamics • Operating Parameters & Curves • Installation & Alignment Considerations
1215 - 1230	Break
1215 – 1230	Process Equipment Types: Heat Exchangers, Reactors, Tanks, Vessels • Key Process Functions & Operation • Design Standards (ASME, API, etc.) • Maintenance Requirements

1230 - 1420	Codes, Standards & Regulatory Compliance
	API, ASME, ASTM Relevance • Inspection Codes: API 570, 653, 510 •
	Pressure Equipment Directive (PED) Overview • Local Authority &
	SEMBCORP Compliance Requirements
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One

Day 2:	Tuesday, 02 nd of September 2025
0730 - 0900	Visual Inspection Techniques
	Tools for Visual Inspection • Common Defects: Corrosion, Cracks, Weld
	Defects • Surface Preparation & Lighting Requirements • Documentation &
	Defect Categorization
	Pipeline NDT Techniques
0900 - 0930	Ultrasonic Testing (UT) Basics • Radiographic Testing (RT) Interpretation •
0900 - 0930	Magnetic Particle & Dye Penetrant Testing • Acoustic Emission & Advanced
	NDT
0930 - 0945	Break
	Hydrostatic & Pneumatic Testing
0945 - 1100	Test Pressure Calculation • Test Medium Selection • Leak Detection
	Procedures • Test Documentation & Acceptance Criteria
	Welding Inspection & Quality Checks
1100 – 1230	Weld Joint Types & Symbols • WPS, PQR & Welder Qualifications •
1100 - 1230	Inspection Stages: Pre-Weld, In-Process, Post-Weld • Common Welding
	Defects & Rejection Standards
1215 – 1230	Break
	Corrosion Mechanisms in Pipelines
1230 – 1330	Uniform, Pitting & Crevice Corrosion • MIC (Microbiologically Influenced
1230 - 1330	Corrosion) • Corrosion Rate Monitoring Methods • Coatings, Linings &
	Cathodic Protection
	Pipeline Quality Documentation
1330 - 1345	Inspection Test Plans (ITPs) • Quality Control Checklists • Non-
	Conformance Reports (NCRs) • QA/QC Dossier Preparation
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about
	the Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

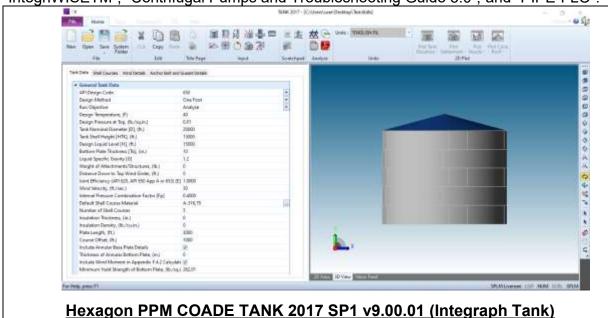
Wednesday, 03rd of September 2025 Day 3:

	Pump Performance Testing
0730 - 0900	Flow, Head, Power & Efficiency Curves • Performance vs Design Data •
	Vibration & Noise Checks • Pump Acceptance Criteria
	Visual & Functional Inspection of Pumps
0900-0930	Casing, Shaft & Seal Inspection • Impeller & Bearing Condition Checks •
	Alignment & Anchorage Integrity • Operational Safety Checks
0930 - 0945	Break

0945 – 1100	Pump Failure Analysis
	Common Failure Modes: Cavitation, Misalignment • Root Cause Analysis
	Techniques • Condition-Based Failure Detection • Preventive vs Reactive
	Maintenance
	Seal System Inspection & Maintenance
1100 – 1230	Types of Mechanical Seals • Seal Flushing Plans • Seal Failure Indications •
	Installation & Troubleshooting Techniques
1215 - 1230	Break
	Lubrication & Bearing Inspection
1230 – 1330	Lubricant Selection & Contamination Control • Bearing Housing
1230 - 1330	Temperature & Vibration • Greasing Intervals & Quantity • Signs of Bearing
	Fatigue
	Pump Quality Control Procedures
1330 - 1345	Quality Assurance in Procurement & Installation • Factory Acceptance
1550 - 1545	Testing (FAT) • Maintenance Logs & Inspection Reports • Performance
	Improvement Through KPI Tracking
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about
	the Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4: Thursday, 04th of September 2025

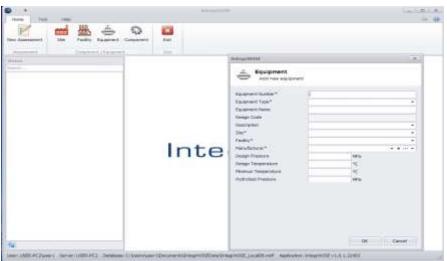
Day 4:	Thursday, 04" of September 2025
0730 - 0900	Inspection of Heat Exchangers & Pressure Vessels
	Tube Inspection & Fouling Checks • Shell-Side & Tube-Side Cleaning
	Inspection • Leak Testing & Pressure Verification • Integrity of Expansion
	Joints & Gaskets
	Storage Tank Inspection (API 653)
0900 - 0930	Tank Bottom Scanning & Corrosion Mapping • Roof & Shell Inspection •
	Settlement & Foundation Checks • Tank Calibration & Certification
0930 - 0945	Break
	Quality Management Systems (QMS) in Maintenance
0945 - 1100	Quality Objectives & KPIs • Internal Audits & Corrective Actions • Supplier
	Quality Management • Continuous Improvement in Inspection Systems
	Risk-Based Inspection (RBI) Approach
1100 - 1230	RBI Methodology Overview • Damage Mechanisms & Likelihood Assessment
	• Inspection Interval Determination • Risk Matrix Application
1215 - 1230	Break
	Fitness-for-Service (FFS) Evaluation
1230 - 1330	API 579 Assessment Levels • Deterioration vs Operational Limits •
	Remaining Life Estimation • Decision-Making for Repair or Replacement
	Inspection Reporting & Data Management
1330 - 1345	Digital Inspection Records • Report Structure & Photographic Evidence •
	KPI Tracking & Dashboard Reporting • Compliance Traceability
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about
	the Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

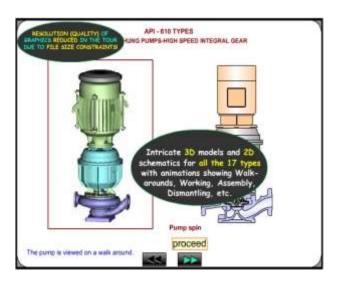


Day 5:	Friday, 05 th of September 2025
0730 - 0830	Inspection Planning & Scheduling
	Inspection Frequency Determination • Shutdown & Turnaround Planning •
	Coordination with Operations & Safety Teams • Resource & Manpower
	Allocation
	Quality Audits & Root Cause Analysis
0830 - 0930	Internal vs External Audits • Non-Conformance Detection & Follow-Up • 5
	Whys & Fishbone Diagram • Continuous Improvement Loops
0930 - 0945	Break
	Case Studies: Pipeline & Pump Failures
0945 - 1100	Real-Life Failure Incidents • Inspection Errors versus Design Flaws • Lessons
	Learned • Recommendations Implementation
	Integrated QA/QC for Projects
1100 – 1230	Inspection During Construction Phases • Material Verification &
	Traceability • Welding & NDT Coordination • Turnover Dossier Completion
1230 – 1245	Break
	Inspection Walkthrough
1245 - 1315	Simulated Pipeline & Pump Inspection • Reporting Identified Defects •
	Team-Based Evaluation • Review Against Acceptance Standards
1345 – 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about
	the Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the simulator "Hexagon PPM COADE TANK 2017 SP1 v9.00.01 (Integraph Tank)", "IntegriWISETM", "Centrifugal Pumps and Troubleshooting Guide 3.0", and "PIPE-FLO".




<u>IntegriWISE™</u>

Centrifugal Pumps and Troubleshooting Guide 3.0

PIPE-FLO

<u>Course Coordinator</u>
Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>

