

COURSE OVERVIEW PE1084 Advanced Distillation Technology

Course Title

Advanced Distillation Technology

Course Date/Venue

November 16-20, 2025/Tamra Meeting Room, Al Bandar Rotana - Creek, Dubai, UAE

Course Reference

PE1084

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Advanced Distillation Technology. It covers the thermodynamic principles, distillation equipment and mass transfer in distillation; the material and energy balances, column hydraulics, flow regimes and column design methodology; the reboiler and condenser design, tray column design, packed column design and control of conventional columns; the effects of feed flowrate and composition, reflux variation impacts, column pressure and temperature influence; the startup and stabilization techniques and energy integration in distillation: and the multi-effect and thermally coupled columns. dividing wall columns (DWC) azeotropic and extractive distillation.

During this interactive course, participants will learn the reactive distillation, hybrid distillation systems, advanced process control in distillation and dynamic behavior of distillation columns; the troubleshooting techniques, fouling and corrosion management, optimization strategies and Aspen HYSYS simulation tools; the column revamp and debottlenecking, retrofit design strategies and process safety in distillation systems; the intensified distillation systems, hybrid separation technologies, Al and digital twin applications; and the future industry trends and sustainability

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an advanced knowledge on distillation technology
- Discuss advanced distillation, thermodynamic principles, distillation equipment and mass transfer in distillation
- Recognize material and energy balances, column hydraulics, flow regimes and column design methodology
- Illustrate reboiler and condenser design, tray column design, packed column design and control of conventional columns
- Identify the effects of feed flowrate and composition, reflux variation impacts, column pressure and temperature influence and apply startup and stabilization techniques
- Carryout energy integration in distillation and discuss multi-effect and thermally coupled columns, dividing wall columns (DWC) and azeotropic and extractive distillation
- Recognize reactive distillation, hybrid distillation systems, advanced process control in distillation and dynamic behavior of distillation columns
- Employ troubleshooting techniques, fouling and corrosion management, optimization strategies and Aspen HYSYS simulation tools
- Determine column revamp and debottlenecking, retrofit design strategies and process safety in distillation systems
- Recognize intensified distillation systems, hybrid separation technologies, Al and digital twin applications and future industry trends and sustainability

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of advanced distillation technology for process engineers, operations engineers, shift engineers, process control engineers, production, plant managers, maintenance engineers, chemical, mechanical engineers and other technical staff.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Henry Beer is a Senior Process Engineer with over 30 years of indepth industrial experience within the Petrochemical, Oil & Gas industries specializing in Hydrocarbon Process Equipment, DOX Unit Operation & Troubleshooting, Advanced Distillation, Energy Integration in Distillation, Azeotropic & Extractive Distillation, Hybrid Distillation System, Fouling & Corrosion Management, Polyethylene & Polypropylene Processing, Oil Movement Storage & Troubleshooting, Power

Plant Chemistry, Fuel Quality Monitoring System Fundamentals, Liquid Bulk Cargo Handling, Oil Refinery Cost Management, Flare & Blowdown Operation, Pressure Relief Systems Maintenance & Troubleshooting, Refinery SRU, Tail Gas Treating, Sour Water & Amine Recovery Units, Propylene Compressor and Turbine, Clean Fuel Technology & Standards, Principles of Operations Planning, Heat Exchangers & Fired Heaters Operation & Troubleshooting, Plastic Extrusion Technology Operation & Troubleshooting, Chemical Engineering for Non-Chemical Engineers, Process Plant Troubleshooting, Process Plant Optimization Technology, Engineering Problem Solving, Process Plant Performance & Efficiency, Process Plant Start-up & Shutdown, Process Plant Commissioning, Process Plant Turnaround & Shutdown, Pumps & Compressors Troubleshooting, Fired Heaters & Air Coolers Maintenance, Pressure Vessels & Valves Repair, Polymers, Plastics, Polyolefin & Catalysts, Polymerization, Thermal Analysis Techniques, Rheology, Thermoplastics, Thermosets, Coating Systems and Fibre Reinforced Polymer Matrix Composites. Further, he is also well-versed in Water Hydraulic Modelling, Efficient Shutdowns, Turnaround & Outages, Pump Selection and Installation, Operation and Maintenance of Pumps, Demand & Supply Management, Catalyst Manufacturing Techniques, Fuel Systems Management, Aviation Fuel, Diesel, Jet Fuel, Petrol and IP Octane, Cetane Control and related Logistics, Road, Rail and Pipeline Distribution, Process Design and Optimisation, Boiler Feed Water Preparation, Flocculation Sedimentation, Hot Lime Water Softening Processes, Desalination Processes, Reverse Osmosis, Molecular Sieves, activated Sludge Aerobic/Anaerobic, Sludge Removal and Incineration Process Control, Domestic Sewage Plants Optimisation, Process Cooling Water System, High Pressure and Low Pressure Tank Farm Management, Hydrocarbon and Chemical products and GTL (Gas to Liquids).

During his career life, Mr. Beer holds significant key positions such as the **Director**, **Global Commissioning Manager**, **Process Engineering Manager**, **Senior Business Analyst**, **Process Engineer**, **Chemical Engineer**, **Senior Technician**, **Technical Sales Engineer**, **Entrepreneur**, **Financial Consultant**, **Business Analyst**, **Business Financial Planner** and **Independent Financial Planner** to various international companies such as the **Sasol**, **SASOLChem**, **TAG Solvents**, **Virgin Solvent Products**, **SARS** & **SAPIA** (**South African Petroleum Industry Association**) and **RFS Financial Services** (**Pty**) **Ltd**.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Sunday, 16th of November 2025 **Dav 1:**

Day 1.	Sunday, 10 Of November 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction to Advanced Distillation Overview of Distillation Processes and Applications • Key Terminologies and Definitions • Review of Conventional versus Advanced Distillation • Industry Relevance and Process Integration
0930 - 0945	Break
0945 - 1030	Thermodynamic Principles Vapor-Liquid Equilibrium (VLE) Fundamentals • Raoult's Law, Dalton's Law, and Deviations • Phase Diagrams and Azeotropes • Impact of Non-Ideal Behavior on Design
1030 - 1130	Distillation Equipment Overview Columns, Trays, and Packing Systems • Reboilers and Condensers • Internals and Auxiliary Systems • Selection Criteria and Design Considerations
1130 – 1215	Mass Transfer in Distillation Concept of Mass Transfer and Driving Forces • Enthalpy Balance and Relative Volatility • Diffusion and Transfer Units • Height of Transfer Unit and Packing Efficiency
1215 – 1230	Break
1230 - 1330	Material & Energy Balances M&E Balance Fundamentals for Distillation • Multicomponent Systems and Enthalpy Curves • McCabe-Thiele and Ponchon-Savarit Method Review • Application in Process Simulation
1330 - 1420	Column Hydraulics & Flow Regimes Tray Hydraulics and Flooding • Pressure Drop Considerations • Downcomer Design and Tray Spacing • Packed Column Hydraulics and Limitations
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2:	Monday, 17" of November 2025
0730 - 0830	Column Design Methodology Determination of Theoretical Stages • Minimum Reflux and Total Reflux •
0730 - 0030	Feed Condition and Q-Line Analysis • Design Margin Considerations
	Reboiler & Condenser Design
0830 - 0930	Types of Reboilers and Condensers • Duty Calculation and Temperature
	Approach • Heat Transfer Considerations • Startup and Shutdown Strategies
0930 - 0945	Break
	Tray Column Design
0945 - 1100	Tray Types and Selection Criteria • Weir, Downcomer, and Hole Sizing •
	Efficiency Calculation • Troubleshooting Tray Malfunctions
	Packed Column Design
1100 – 1215	Structured versus Random Packing • Pressure Drop and Capacity Curves •
1100 - 1213	Mass Transfer Coefficients and HETP • Installation and Maintenance
	Guidelines
1215 – 1230	Break
	Control of Conventional Columns
1230 - 1330	Reflux Ratio Control and Temperature Profiles • Pressure and Level Control
1230 - 1330	Strategies • Bottom and Overhead Composition Control • Troubleshooting
	Control Instabilities
	Operational Parameters & Sensitivities
1330 - 1420	Effects of Feed Flowrate and Composition • Reflux Variation Impacts • Column
	Pressure and Temperature Influence • Startup and Stabilization Techniques
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3: Tuesday, 18th of November 2025

Day J.	ruesday, 10 of November 2025
	Energy Integration in Distillation
0730 - 0830	Concept of Energy Integration • Heat Recovery Systems and Pinch Analysis •
	Column Sequencing and Optimization • Utility Minimization Strategies
	Multi-Effect & Thermally Coupled Columns
0830 - 0930	Principles of Multi-Effect Distillation • Thermally Coupled (Petlyuk) Systems
	• Energy Efficiency Gains • Practical Applications and Case Studies
0930 - 0945	Break
0945 - 1100	Dividing Wall Columns (DWC)
	Concept and Configuration • Design Considerations and Internals •
	Operational Benefits and Challenges • Real-World Implementation Examples
1100 – 1215	Azeotropic & Extractive Distillation
	Azeotrope Characteristics and Challenges • Solvent Selection for Extractive
	Distillation • Process Schemes and Solvent Recovery • Industrial Examples
	(Ethanol Dehydration, etc.)
1215 – 1230	Break
1230 – 1330	Reactive Distillation
	Principle of Combining Reaction and Separation • Column Design and
	Catalyst Placement • Process Intensification Benefits • Examples in Chemical
	and Petrochemical Processes

1330 – 1420	Hybrid Distillation Systems Membrane-Distillation Hybrids • Pervaporation + Distillation Integration • Distillation with Adsorption/Absorption • Potential for Debottlenecking Existing Plants
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4: Wednesday, 19th of November 2025

Day 4:	Wednesday, 19" of November 2025
0730 - 0830	Advanced Process Control in Distillation
	Feedforward and Cascade Control • Model Predictive Control (MPC) •
	Advanced Temperature/Composition Control • Control Loop Optimization
	Dynamic Behavior of Distillation Columns
0830 - 0930	Column Response to Disturbances • Start-Up and Shutdown Dynamics •
	Transient versus Steady-State Behavior • Modeling of Dynamic Operations
0930 - 0945	Break
	Troubleshooting Techniques
0945 - 1100	Identifying Operational Bottlenecks • Tray Damage, Flooding, Weeping,
0943 - 1100	Entrainment • Feed Quality and Hydraulics Issues • Systematic
	Troubleshooting Procedure
	Fouling & Corrosion Management
1100 – 1215	Causes of Fouling in Reboilers and Internals • Monitoring and Mitigation
1100 - 1213	Techniques • Corrosion Mechanisms and Protection • Cleaning Strategies and
	Maintenance Plans
1215 - 1230	Break
	Optimization Strategies
1230 - 1330	Energy Optimization Through Reflux Ratio Tuning • Column Pressure
1230 - 1330	Optimization • Product Purity versus Energy Trade-Off • Real-Time
	Optimization Techniques
1330 – 1420	Use of Simulation Tools
	Process Simulation Using Commercial Software (e.g., Aspen HYSYS, Aspen
	Plus) • Sensitivity and Case Study Analysis • Model Calibration and
	Validation • Scenario Testing for Optimization
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5: Thursday, 20th of November 2025

Day 5.	Thursday, 20 Of November 2025
0730 - 0830	Column Revamp & Debottlenecking
	Identifying Limiting Factors • Hardware versus Operational Debottlenecking •
	Tray and Packing Upgrades • Capacity versus Efficiency Improvements
0830 - 0930	Retrofit Design Strategies
	Design Modifications for Energy Savings • Integration of DWC and Hybrid
	Systems • Internals Replacement and Revamp Options • Project Execution and
	Safety Considerations
0930 - 0945	Break

0945 – 1100	Industrial Case Studies
	Refineries and Petrochemical Plants Examples • DWC and Extractive
	Distillation Projects • Energy and Cost Savings Analysis • Lessons Learned
	and Best Practices
1100 – 1230	Process Safety in Distillation Systems
	Overpressure Protection and PSV Sizing • Column Relief System Design •
	Flare System Integration • Emergency Shutdown Procedures
1230 – 1245	Break
1245 – 1345	Emerging Technologies in Distillation
	Intensified Distillation Systems • Hybrid Separation Technologies • AI and
	Digital Twin Applications • Future Industry Trends and Sustainability
1345 – 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

<u>Practical Sessions</u>
This practical and highly-interactive course includes real-life case studies and exercises:-

<u>Course Coordinator</u>
Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>

