

COURSE OVERVIEW EE1118 Modern Power System Proactive Relaying

(30 PDHs)

Course Title

Modern Power System Proactive Relaying

Course Reference

EE1118

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Date/Venue

Session(s)	Date	Venue
1	June 23-27, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
2	August 31-Sep 04, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
3	November 10-14, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
4	December 14-18, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Modern Power System Proactive Relaying. It covers the types of power systems and power system components; the fundamentals of power system protection, relaying components and operation and proactive protection strategy; the power system faults and fault analysis and safety considerations in protection systems; the distance protection schemes, differential protection for power equipment and overcurrent protection and time coordination; the proactive relay settings optimization, communication in protection systems; and the phasor measurement units (PMU) in protection, fault detection using synchrophasors and self-healing grids and proactive relaying.

Further, the course will also discuss the artificial intelligence and machine learning in protection, protection cvbersecuritv systems in modern and transformer protection and relaying; the generator protection and control, busbar protection systems, feeder protection and coordination and motor protection systems; the arc flash risks in protection systems, protective measures against arc flash and standards and regulations for arc flash protection; the testing and commissioning of protection systems; and the proper maintenance of protection relays and equipment.

EE1118 - Page 1 of 11

During this interactive course, participants will learn the proactive monitoring and real-time data analysis, data analysis for early detection of faults and cloud-based platforms for protection system monitoring; the emerging trends in power system protection, smart grids and the future of protection relays; the role of automation and robotics in power system protection and future advancements in protection technology; and the key performance indicators for protection systems, methods for evaluating protection system reliability and strategies for improving protection system performance.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on modern power system proactive relaying
- Identify the types of power systems and power system components
- Discuss the fundamentals of power system protection, relaying components and operation and proactive protection strategy
- Apply power system faults and fault analysis and safety considerations in protection systems
- Recognize distance protection schemes, differential protection for power equipment and overcurrent protection and time coordination
- Carryout proactive relay settings optimization and discuss communication in protection systems and digital relays and smart protection systems
- Apply phasor measurement units (PMU) in protection, fault detection using synchrophasors and self-healing grids and proactive relaying
- Determine artificial intelligence and machine learning in protection, cybersecurity in modern protection systems and transformer protection and relaying
- Carryout generator protection and control, busbar protection systems, feeder protection and coordination and motor protection systems
- Identify arc flash risks in protection systems, protective measures against arc flash and standards and regulations for arc flash protection
- Test and commission protection systems and apply proper maintenance of protection relays and equipment
- Employ proactive monitoring and real-time data analysis, data analysis for early detection of faults and cloud-based platforms for protection system monitoring
- Discuss the emerging trends in power system protection, smart grids and the future of protection relays, role of automation and robotics in power system protection and future advancements in protection technology
- Implement key performance indicators for protection systems, methods for evaluating protection system reliability and strategies for improving protection system performance

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

EE1118 - Page 2 of 11

Who Should Attend

This course provides an overview of all significant aspects and considerations of modern power system proactive relaying for electrical engineers, power system protection engineers, substation and transmission engineers, scada and automation engineers, control systems engineers, field service engineers, project managers, grid operators and planners, maintenance supervisors, substation technicians and relay technicians and other technical staff.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• **BAC**

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

ACCREDITED The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

EE1118 - Page 3 of 11

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Pan Marave, PE, MSc, BEng, is a Senior Electrical & Instrumentation Engineer with over 40 years of extensive experience in Oil, Gas, Petrochemical, Refinery & Power industries. His expertise includes Circuit Breaker, HV Switchgear Maintenance, HV/LV Electrical Authorisation, Basic Electricity, Electrical & Special Hazards, Personnel Protection, HV/LV Equipment, Motor Controllers, Electrical Switching Practices, Emergency Planning,

Safety Management, Safety Instrumented Systems (SIS), Safety Integrity Level (SIL), Emergency Shutdown (ESD); DCS, SCADA & PLC; Measurement (Flow, Temperature, Pressure); Process Analyzers & Analytical Instrumentation; Process Control, Instrumentation & Safeguarding; Process Controller, Control Loop & Valve Tuning; Industrial Distribution Systems; Industrial Control & Control Systems, Power Systems Protection & Relaying; Earthing, Bonding, Grounding, Lightning & Surge Protection; Electric Power Substation & Systems; Electrical Engineering Principles; Motor Control Circuit; Electrical Fault Analysis; Electrical Networks & Distribution Cables; Circuit Breakers, Switchgears, Transformers, Hazardous Areas Classification and Detailed Engineering Drawings, Codes & Standards. Furthermore, he is also well-versed in Microprocessors Structure, Lead Auditor (ISO 9000:2000), ISO 9002, Quality Assurance, and Projects & Contracts Management.

Presently, Mr. Marave is the **Technical Advisor** of **Chamber of Industry & Commerce** in Greece. Prior to this, he gained his thorough practical experience through several positions as the **Technical Instructor**, **Engineering Manager**, **Electronics & Instruments Head**, **Electrical**, **Electronics & Instruments Maintenance Superintendent**, **Assistant General Technical Manager** and **Engineering Supervisor** of various international companies such as the **Alumil** Mylonas, **Athens Papermill**, **Astropol** and the **Science Technical Education**.

Mr. Marave is a **Registered Professional Engineer** and has **Master's** and **Bachelor's** degrees in **Electrical Engineering** from the **Polytechnic Institute of New York** and **Pratt Institute of New York** (USA) respectively. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management** (ILM) and an active member of the **Technical Chamber** and the Institute of Electrical and Electronics Engineer (IEEE) in Greece. He has presented and delivered **numerous international** courses, conferences, trainings and workshops worldwide.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

EE1118 - Page 4 of 11

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day 1	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Overview of Power Systems
0830 - 0930	Types of Power Systems (Generation, Transmission, Distribution) • Power
	System Components • Power Flow Concepts • Importance of Protection Systems
0930 - 0945	Break
	Fundamentals of Power System Protection
0945 - 1045	Basic Protection Concepts • Protection Scheme Types (Overcurrent, Differential,
0943 - 1043	Distance) • Protection Zones and Coordination • The Role of Protection Relays
	in System Stability
	Relaying Components & Operation
1045 - 1145	Relay Types (Electromechanical, Solid-State, Microprocessor-Based) • Current
1045 - 1145	Transformers (CT) and Voltage Transformers (VT) • Relay Settings and
	Adjustments • Functionality of Protection Relays
	Proactive Protection Strategy
1145 - 1230	Defining Proactive Protection vs. Reactive Protection • Preventative
1145 - 1250	Maintenance and Monitoring • Impact of Automation in Proactive Relaying •
	Techniques to Identify Potential Failures Before They Occur
1230 – 1245	Break
	Power System Faults & Fault Analysis
1245 – 1330	<i>Types of Faults (Short Circuit, Open Circuit, Ground Faults)</i> • <i>Symmetrical and</i>
1245 - 1550	Asymmetrical Faults • Fault Location and Fault Current Calculation •
	Protective Relay Response During Faults

EE1118 - Page 5 of 11 EE1118-06-25|Rev.00|16 April 2025

1330 - 1420	Safety Considerations in Protection Systems
	Safety Interlocks and Fail-Safe Mechanisms • Safety in Relay Settings and
	Configurations • Impact of Protection System Failure on Safety • Standards and
	Regulations for Protection System Safety
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day One

Day 2

	Distance Protection Schemes
0730 - 0830	
	<i>Overview of Distance Protection</i> • <i>Impedance-Based Relay Schemes</i> • Z1, Z2, <i>and Z3 Protection Zones</i> • <i>Coordination with Other Protection Devices</i>
	Differential Protection for Power Equipment Differential Protection Principles • Application for Transformers, Generators,
0830 - 0930	and Busbars • Fault Detection and Prevention Through Differential Protection •
	Practical Challenges in Differential Protection
0930 - 0945	Break
0550-0545	Overcurrent Protection & Time Coordination
	Types of Overcurrent Protection (Inverse, Definite Time) • Coordination
0945 – 1130	Between Multiple Relays • Setting Overcurrent Protection for Various
	Equipment • Fault Clearing Time and Its Impact on System Stability
	Proactive Relay Settings Optimization
	Importance of Setting the Correct Parameters • Influence of System
1130 - 1230	Configuration on Relay Settings • Techniques for Optimizing Relay Settings •
	Use of Relay Setting Software Tools
1230 - 1245	Break
	Communication in Protection Systems
1245 1220	Role of Communication in Modern Protection Systems • Protocols Used in
1245 - 1330	Protective Relaying (IEC 61850, DNP3) • Remote Monitoring and Control of
	Protection Systems • Data Exchange Between Relays and SCADA Systems
	Case Studies: Protection System Failures
1330 - 1420	Analysis of Real-World Protection System Failures • Lessons Learned From Past
1550 - 1420	Incidents • Importance of Continuous Monitoring and Testing • Strategies for
	Avoiding Common Failures
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Day 3

0730 - 0830	Digital Relays & Smart Protection Systems Introduction to Digital Relays • Benefits of Smart Protection Systems • Real- Time Data Analysis and Decision-Making • Trends in Digital Protection for
	Power Systems
0830 - 0930	 Phasor Measurement Units (PMU) in Protection Overview of PMUs and Their Role in Protection • Integration of PMUs With Relays for Enhanced Fault Detection • Real-Time Monitoring Using PMU Data • Advanced Applications of PMUs in Grid Management

EE1118 - Page 6 of 11 EE1118-06-25|Rev.00|16 April 2025

0930 - 0945	Break
0945 – 1130	<i>Fault Detection Using Synchrophasors</i> <i>Synchrophasor Technology for Fault Detection</i> • <i>Fault Location Estimation</i> <i>Using Synchrophasors</i> • <i>Role of Synchrophasors in Stability Monitoring</i> • <i>Implementation Challenges and Solutions</i>
1130 - 1230	Self-Healing Grids & Proactive Relaying Concept of Self-Healing Grids • Role of Proactive Relaying in Grid Resilience • Automatic Restoration of Power Following Faults • Real-World Applications of Self-Healing Grids
1230 - 1245	Break
1245 - 1330	Artificial Intelligence & Machine Learning in Protection Introduction to AI/ML in Protection Systems • Predictive Analytics for Fault Detection and Prevention • Machine Learning Models for Optimizing Relay Settings • Future Potential of AI/ML in Proactive Protection
1330 - 1420	Cybersecurity in Modern Protection Systems Importance of Cybersecurity in Power System Protection • Potential Vulnerabilities in Digital Relays • Protective Measures Against Cyber Threats • Standards and Best Practices for Cybersecurity in Protection Systems
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

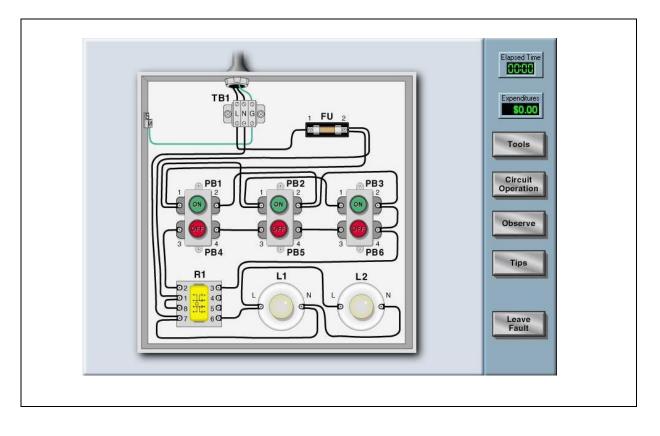
Duy 4	T
0730 - 0830	Transformer Protection & RelayingProtection Schemes for Transformers • Buchholz Relay, Differential Protection •
	Fault Types in Transformers and Their Protection • Maintenance and Testing Practices for Transformer Protection
0830 - 0930	Generator Protection & Control
	Protection Strategies for Generators • Generator Relay Settings and
0050 - 0550	Coordination • Generator Protection Against Faults and Overloads • Advanced
	Fault Detection Techniques for Generators
0930 - 0945	Break
	Busbar Protection Systems
0945 - 1130	Overview of Busbar Protection Principles • Differential Protection for Busbars •
0040 - 1100	Fault Detection and Isolation in Busbar Systems • Maintenance Practices for
	Busbar Protection
	Feeder Protection & Coordination
1130 - 1230	Protection Schemes for Distribution Feeders • Coordination of Protection Relays
1150 - 1250	in Feeder Systems • Protection Settings for Different Types of Feeders • Fault
	Isolation and Restoration in Feeder Systems
1230 - 1245	Break
1245 - 1330	Motor Protection Systems
	Motor Protection Principles • Thermal Overload Protection • Differential
	Protection for Motors • Advanced Motor Protection Techniques

EE1118 - Page 7 of 11

1330 - 1420	Arc Flash Protection & Mitigation
	Understanding Arc Flash Risks in Protection Systems • Protective Measures
	Against Arc Flash • Implementation of Arc Flash Relays • Standards and
	Regulations for Arc Flash Protection
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four

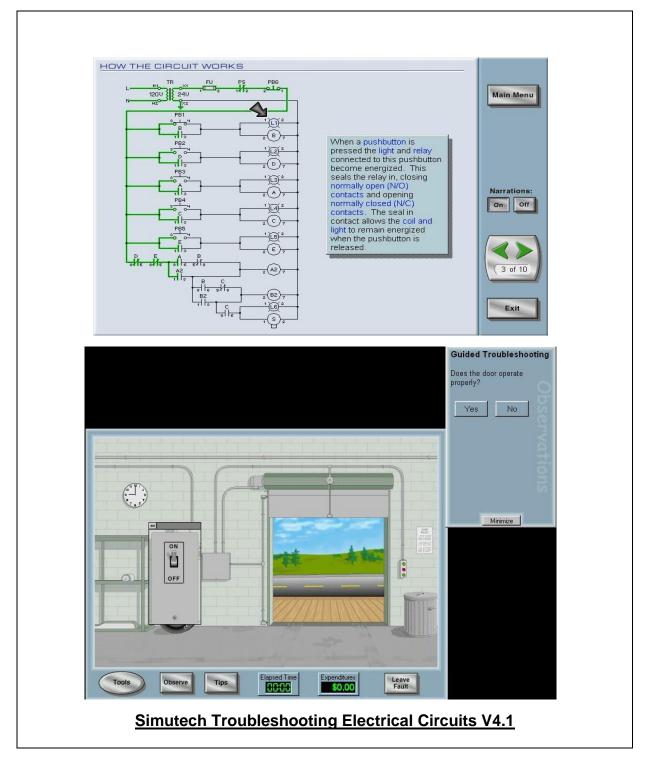
Day 5

Day 5	1
0730 – 0930	Testing & Commissioning of Protection Systems Overview of Protection System Testing • Testing Methods for Relays and Protective Devices • Verification of Relay Settings and Coordination • Troublashapting Protection System Laws During Commissioning
0020 0045	Troubleshooting Protection System Issues During Commissioning
0930 - 0945	Break
0945 - 1030	<i>Maintenance of Protection Relays & Equipment</i> <i>Regular Maintenance Practices for Protection Systems</i> • <i>Importance of Periodic</i> <i>Testing and Calibration</i> • <i>Common Maintenance Issues and Solutions</i> • <i>Predictive Maintenance Techniques for Protection Systems</i>
	Proactive Monitoring & Real-Time Data Analysis
1030 - 1130	Tools for Real-Time Monitoring of Protection Systems • Role of SCADA and Remote Monitoring in Proactive Relaying • Data Analysis for Early Detection of Faults • Use of Cloud-Based Platforms for Protection System Monitoring
	Emerging Trends in Power System Protection
1130 - 1230	Overview of the Latest Trends in Power System Protection • Smart Grids and the Future of Protection Relays • Role of Automation and Robotics in Power System Protection • Future Advancements in Protection Technology
1230 - 1245	Break
1245 - 1345	Reliability & Performance Evaluation Key Performance Indicators for Protection Systems • Methods for Evaluating Protection System Reliability • Strategies for Improving Protection System Performance • Case Studies on Improving System Reliability
1345 - 1400	<i>Course Conclusion</i> <i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i> <i>Course Topics that were Covered During the Course</i>
1400 – 1415	POST TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

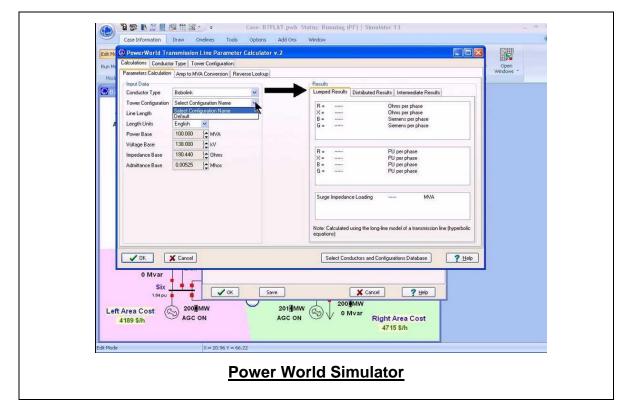

EE1118 - Page 8 of 11 EE1118-06-25|Rev.00|16 April 2025

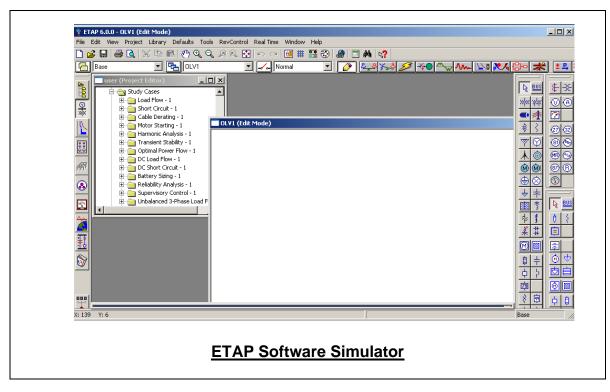
Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulator "Simutech Troubleshooting Electrical Circuits V4.1", Power World" and "ETAP software".



EE1118 - Page 9 of 11





EE1118 - Page 10 of 11

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

EE1118 - Page 11 of 11

