

COURSE OVERVIEW FE0863 AWS-CWEng Certified Welding Engineer Part 3 & 4

CEUS

(40 PDHs)

AWARD

Course Title

AWS-CWEng Certified Welding Engineer Part 3 & 4

Course/Date/Venue

January 12-16, 2025/BoardRoom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Course/Exam Date/Venue

Exam Date : TBA Exam Venue : TBA Registration Closing Date: 8 weeks before the course date

Course Duration/Credits

Five days/4.0 CEUs/40 PDHs

Course Reference FE0863

Course Description

This practical and highly-interactive course includes practical sessions and exercises where participants carryout welding inspection. Theory learnt in the class will be applied using the "E-Welding/Fabrication Simulator", the "AWS Tool Kit", the "Structural Weld Replica Kit" and the NDE Equipment (UT, MT & PT).

This course covers the qualification requirements for Welding Engineers. It describes how qualifications are determined, and the practice by which qualification may be attained and maintained.

The course will evaluate the qualifications of each individual, and provide examinations to test the individual's knowledge in engineering skills and knowledge as well as their ability to apply the principles of welding engineering.

The course is intended to supplement the minimum requirements of employers, codes, other standards, or documents and shall not be construed as a preemption of the employer's responsibility for the work or for the performance of the work. It shall be the responsibility of employers to determine that their employee, who, having qualified as a Welding Engineer, is capable of performing the specific duties involved in their career assignments.

FE0863 - Page 1 of 17

Further, the course will also discuss the NDE/Weld discontinuities, welding heat sources and arc physics; the differences between CC and CV designs, welding arc characteristics and electron emission; the arc temperature and degree of ionization; the magnetic arc blow, lorentz force, shielding gas drag force and weld penetration and width for different shielding gases; the various arc welding process and controls including resistance welding processes, high energy density welding processes, cutting processes, surfacing processing and solid-state welding processes; and the welding and joining metallurgy.

During this interactive course, participants will learn the weld design, brazing and soldering; the safety and health hazards relating to welding, safety hazards, precautions to avoid injury and possess a working knowledge of safety and fire codes; and the practical welding and related applications of welding engineering concepts in the areas of welding safety, weldment design, welding metallurgy, materials, welding process selection, NDE including visual weld inspection, quality assurance, quality control in accordance with codes, specifications other standards and/or drawings.

Moreover, a person with the demonstrated education, experience, and knowledge as defined by this information and who successfully passes the required examinations is considered qualified as an AWS Certified Welding Engineer (CWEng).

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Get prepared for the AWS Certified Welding Engineer (CWEng) Part 3 and Part 4 exam and have enough knowledge and skills to pass such exam in order to get the AWS-CWEng Certification
- Recognize the NDE/Weld discontinuities covering NDE processes and symbols
- Determine welding heat sources and arc physics including power source static and dynamic characteristics as well as the differences between CC and CV designs, welding arc characteristics and electron emission
- Discuss arc temperature and degree of ionization as well as magnetic arc blow, lorentz force, shielding gas drag force and weld penetration and width for different shielding gases
- Explain the various arc welding process and controls including resistance welding processes, high energy density welding processes, cutting processes, surfacing processing and solid-state welding processes
- Describe welding and joining metallurgy covering crystal structure of metals, melting and solidification, phase transformations and phase diagrams, metallurgy and weld-ability of typical engineering materials, microstructure, mechanical properties, carbon equivalent, hydrogen assisted cracking, etc
- Illustrate weld design, brazing and soldering

FE0863 - Page 2 of 17

- Employ safety and recognize health hazards relating to welding, safety hazards, precautions to avoid injury and possess a working knowledge of safety and fire codes
- Review practical welding and related applications of welding engineering concepts in the areas of welding safety, weldment design, welding metallurgy, materials, welding process selection, NDE including visual weld inspection, quality assurance, quality control in accordance with codes, specifications other standards and/or drawings

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides a wide understanding and deeper appreciation of welding engineering for inspection, piping and welding engineers who are seeking AWS CWEng certification. Other engineers, managers and technical staffs who are dealing with welding and fabrication will also benefit from this course.

Exam Eligibility & Structure

To qualify as a Certified Welding Engineer, you must have a combination of qualifying education and work experience, with supporting documentation and should match at least one of the combinations in any one of the grids below:-

MINIMUM EDUCATION	MINIMUM WORK EXPERIENCE
Bachelor of Science or Higher Degree in Engineering	Minimum of one (1) year welding-based work experience
Bachelor of Science or Higher Degree in Engineering Technology	Minimum of two (2) years welding-based work experience
Other Related Bachelor of Science Degree	Minimum of five (5) years welding-based work experience
Associate in Applied Science (A.A.S.) degree	Minimum of ten (10) years welding-based work experience
High School Diploma or Approved High School Equivalent Program	Minimum of fifteen (15) years welding-based work experience

• Candidates are required to successfully complete Parts 1 and 2 of the CWEng examination before progressing to Parts 3 and 4. Upon passing Parts 1 and 2, candidates have one (1) year to apply for Parts 3 and 4.

FE0863 - Page 3 of 17

Required Codes & Standards

Listed below are the effective editions of the publications required for the current Welding Engineer Certification Examination. Each student must purchase these documents separately and have them available for use during the class as their cost is not included in the course fees:-

Reference Title	Author	Publisher
ANSI Z49.1 Safety in Welding, Cutting and Allied Processes		AWS
Applied Fluid Mechanics, 4th Ed.	Mott	Merrill Publishing Company
ASM Handbook Vol. 17, NDE		ASM
ASM Handbook Vol. 6 Welding/Brazing 10th Ed.		ASM
AWS D1.1 Structural Welding Code—Steel		AWS
Design of Weldments	Omer W. Blodgett	The James F. Lincoln Arc Welding Foundation
Engineer in Training Manual		
Essentials of Engineering Economics, 2nd Ed.	Riggs & West	McGraw Hill
Fracture & Fatigue Control in Structures, Application of Fracture Mechanics	John M. Barson & Stanley T. Rolfe	Prentice Hall Second Edition, 1987
Fundamentals of Engineering: The Most Effective FE/EIT Review	Merle C. Potter	Great Lakes Press
Fundamentals of Welding Technology, Modules 1 - 19		Gooderham Centre for Industrial Learning
Handbook of Arc Welding		James F. Lincoln Arc Welding Foundation
Introduction to the Practice of Statistics ISBN 0 7167 2250 X	Moore & McCabe	Freeman
Introductory Physical Metallurgy of Welding	Easterling	Butterworths
Introductory Welding Metallurgy		AWS
Manufacturing, Engineering & Technology ISBN 0 201 538460	Serope and Kalpakjian	Addison Wesley
Mark's Standard Handbook for Mechanical Engineers	Avallone and Baumeister	McGraw Hill
Mechanical Metallurgy	G. Dieter	McGraw Hill
Metals and How to Weld Them		James F. Lincoln Arc Welding Foundation, Second Edition, 1990
Modern Welding Technology, 4th Ed.	H. Cary	Prentice Hall
NFPA 51B Standard for Fire Prevention During Welding, Cutting, and Other Hot Work		National Fire Protection Association
Occupational Safety and Health Administration (OSHA). Code of Federal Regulations, Title 29 Labor, Part 1910 Subpart Q – Welding, Cutting, and Brazing		U.S. Government Printing Office

FE0863 - Page 4 of 17

Occupational Safety and Health Administration (OSHA). Code of Federal Regulations, Title 29 Labor, Part 1910.1200 – Hazard Communication		U.S. Government Printing Office
Occupational Safety and Health Administration (OSHA). Code of Federal Regulations, Title 29 Labor, Part 1926 Subpart J– Welding and Cutting		U.S. Government Printing Office
Physics of Arc Welding	J. Lancaster	Pergamon
Product Design for Manufacture and Assembly ISBN 0 8247 9176 2	Boothroyd, Dewhurst & Knight	Marcel Dekker
Quality Control, 5th Ed.	Besterfield	Prentice Hall
Robots & Manufacturing Automation	Asfahl	John Wiley
Stainless Steel	R.A. Lula	ASM International, 1986
Statics & Strength of Materials, 3rd Edition, ISBN: 0-13-453201-5	Morrow	Prentice Hall
Statics & Strength of Materials: A Parallel Approach to Understanding Structures	Lawrence J. Wolf	Merrill Publishing Company
Welt IT CD, Computer Influence for Welding Personnel		Gooderham Centre for Industrial Learning
Weldability of Steels, 4th Edition, ISBN: 1- 58145-430-9	R.D Stout	Welding Research Council
Welding Aluminum: Theory & Practice		The Aluminum Association, Second Edition, June 1991
Welding Design, Modules 30-39		Gooderham Centre for Industrial Learning
Welding Encyclopedia	Jefferson	AWS
Welding Handbook Vols. 1,2,3,4,8 th Ed.		AWS
Welding Metallurgy	Sindo Kou	John Wiley & Sons
Welding Metallurgy	Linnert	AWS
Welding Metallurgy	J. Lancaster	Pergamon
Welding Metallurgy, Modules 8,9,12,20-23		Gooderham Centre for Industrial Learning

<u>References for Taking the Part 3 Examination</u> The following are the reference book(s) used to draw exam questions. Candidates can bring the hard copy of these reference books to a test center.

Title	Publisher: URL	ISBN
ANSI Z49.1 Safety in Welding, Cutting and Allied Processes	AWS https://app.aws.org/technical/AWS_Z49.pdf	978-0-87171-809-9
AWS Welding Handbook	AWS	0-87171-657-7
Volume 1	https://www.aws.org/publications/page/welding-	
(9 th and 10 th Editions)	handbook-9- edition-volume-1	
- 🐼 ilm 🖤	Kenter State	

		978-1-64322-015-4
	AWS https://www.aws.org/publications/page/10th- edition-volume-1	
AWS Welding Handbook Volume 2 (Ninth Edition)	AWS https://www.aws.org/publications/page/welding- handbook-9- edition-volume-2	0-87171-729-8
AWS Welding Handbook Volume 3 (Ninth Edition)	AWS https://www.aws.org/publications/page/welding- handbook-9- edition-volume-3	978-0-87171-053-6
AWS Welding Handbook Volume 4 (Ninth Edition)	AWS https://www.aws.org/publications/page/welding- handbook-9- edition-volume-4	978-0-87171-759-7
AWS Welding Handbook Volume 5 (Ninth Edition)	AWS https://www.aws.org/publications/page/welding- handbook-9thedition-volume-5	978-0-87171-856-3
Blodgett: Design of Weldments	James F. Lincoln Arc Welding Foundation https://www.jflf.org/ProductDetails.asp?ProductCod e=DW	0-937390-13-5
Lippold & Kotecki: Welding Metallurgy and Weldability of Stainless Steels	Wiley https://www.wiley.com/enus/Welding+Metallurgy+an d+Weldability+of+Stainless+Steels- p9780471473794	978-0-471-47379-4

References for Taking the Part 4 Examination

The AWS D1.1/D1.1M 24th Edition, 2020 is the only reference material that can be used during the exam. An electronic PDF copy of D1.1 will be available on the screen during the exam.

IMPORTANT! Candidates are allowed to bring a hard copy of D1.1 to test centers.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures
20% Practical Workshops & Work Presentations
30% Hands-on Practical Exercises & Case Studies
20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Training Fee

US\$ 6,000 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Exam Fees US\$ 1,110 per Delegate + VAT.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

FE0863 - Page 6 of 17

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Course Accreditations

Haward Technology is accredited by the following international accreditation organizations:-

American Welding Soc

American Welding Society (AWS)

Haward Technology is the International Agent of the American Welding Society (AWS) and the Authorized Provider of AWS international certification examinations outside the USA. Haward Technology exhibits compliance and adherence to AWS Quality Control Standards in the development, conduct and delivery of certification courses and exams for welding and inspection professionals on behalf of the American Welding Society.

The American Welding Society's certification programs are internationally recognized and are used as a benchmark of quality workmanship and skills within the welding industry around the world.

• The International Accreditors for Continuing Education and Training (IACET USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **4.0 CEUs** (Continuing Education Units) or **40 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

• *** • BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

FE0863 - Page 7 of 17

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Geoff Kaschula is a Senior Welding Engineer with over 30 years of extensive experience within the oil, gas, petrochemical, process and power industries. His fields of specialization cover the areas of welding technology; design, fabrication, construction, installation, commissioning, inspection & maintenance of process equipment such as boilers, pressure vessels, piping systems, structures & storage tanks; condition assessment of rotating & auxiliary equipment like compressors, steam turbines, pumps, heat

exchangers & valves; Risk Based Inspection (RBI), Fitness-For-Service (FFS); welding & fabrication engineering, failure analysis, flaw evaluation, remnant life determination, capacity reviews for process and power equipment, asset management and project management. He has also worked extensively with international industry standards such as ASME, API, TEMA, BS/EN, ANSI & AWS to name a few. Mr. Kaschula is currently the Director of RBI-Asset Management.

Mr. Kaschula has handled wide-ranging responsibilities and assumed various important positions over the past 30 years in his career. Prior to founding his own company, he was the Quality Manager of Parsons Brinckerhoff, a power company, where he handled **design verification** of equipment such as boilers, pressure equipment, heat exchangers & pumps in addition to the overall development of management systems in compliance with international safety, quality and technical standards. He also worked as the Inspection Manager of Weltech where he was in charge of all major inspection activities and plant condition evaluation of petrochemical plants and power stations. He also worked extensively as a Project Manager for the design, fabrication and manufacturing of pressure vessels, heat exchangers and piping in accordance with ASME III & VIII standards. He also served as Technical Assessor, Inspection Engineer, Welding Engineer and QA/QC Engineer for companies like Arnot & Hendrina Power Station, Projects Expedited, Airtech Davidson & the Department of Transport. As the current **Director** of **RBI-Asset Management**, he oversees the overall operations of the company in providing technical and advisory services in the field of infrastructure asset management, design review, verification, inspection and condition assessment of major refinery equipment such as pressure vessels, storage tanks and piping systems.

Mr. Kaschula is a qualified Welding Engineer. He is also a certified API 510 Pressure Vessel Inspector, certified API 570 Piping Inspector, certified API 580 Risk Based Inspector, a Registered Inspector & Competent Person for Boilers, Pressure Vessels & Pressure Equipment as well as a Registered International Professional Welding Technologist by the International Institute of Welding (IIW) and a Certified Instructor/Trainer.

FE0863 - Page 8 of 17

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 12 th of January 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Part 3 – Welding Related Disciplines: NDE/Weld Discontinuities
0830 - 1000	NDE Processes (Radiographic, Ultrasonic, Magnetic Particle, Liquid Penetrant,
	Eddy Current, Etc. – Characteristics, Advantages and Limitations)
1000 - 1015	Break
1015 - 1200	Part 3 – Welding Related Disciplines: NDE/Weld Discontinuities (cont'd)
1015 - 1200	NDE Symbols
1200 - 1300	Lunch
	Part 3 - Welding Related Disciplines: Welding Heat Sources & Arc
	Physics
	Power Source Static and Dynamic Characteristics (Open Circuit Voltage and
1300 - 1500	Short Circuiting Current, Slope) • Differences between CC and CV Designs
	(Principle of Self-Adjusting) • Welding Arc Characteristics (Current and Voltage
	Relationship, Arc Length Effect) • Electron Emission (Ionization Potential,
	Work Function, Electrode Material, Shielding Gas, Arc Stability)
1500 - 1515	Break
	Part 3 - Welding Related Disciplines: Welding Heat Sources & Arc
	Physics (cont'd)
	Arc Temperature and Degree of Ionization (Shielding Gas Influence) • Magnetic
1515 - 1630	Arc Blow (Work Lead Location and Condition) • Lorentz Force (Effect on Droplet
	Detachment and on Adjacent Power Cables) • Shielding Gas Drag Force (Effect
	on Droplet Detachment and Metal Transfer Mode) Weld Penetration and Width
	for Different Shielding Gases
1630 – 1730	Distribute Homework & Recap
1730	End of Day One

Day 2:	Monday, 13 th of January 2025
0730 - 0830	Homework Review
0830 - 1000	Part 3 – Welding Related Disciplines: Welding Processes & ControlsArc Welding Processes (SMAW, GMAW, FCAW, GTAW, SAW, PAW)Resistance Welding Processes (RW, High Frequency RW), High Energy DensityWelding Processes (LBW, EBW)
1000 - 1015	Break
1015 – 1200	Part 3 - Welding Related Disciplines: Welding Processes & Controls(cont'd)Cutting Processes (OFC, CAC, and PAC)Surfacing Processing (SW, THSP)• Solid-State Welding Processes (FRW, FW)

FE0863 - Page 9 of 17

1200 – 1300	Lunch
	Part 3 – Welding Related Disciplines: Welding & Joining Metallurgy
	Crystal Structure of Metals (FCC, BCC, HCP, Unit Cells, Lattice Parameter,
	C/A Ratio, Atom Positions, Interstitial Positions) • Melting and Solidification,
	Phase Transformations and Phase Diagrams (Eutectic, Eutectoid, Peritectic and
	Monotectic, Lever Rule Calculation) Metallurgy & Weld-Ability of Typical
1300 - 1500	Engineering Materials (Low Carbon Structural Steels, Cast Irons, Stainless
	Steels, Nickel Alloys, Aluminum Alloys, Titanium Alloys, Etc.) Microstructure
	(e.g., Ferrous Alloys–Grain Boundary Ferrite, Acicular Ferrite, Bainite,
	Martensite, Austenite, Delta Ferrite, etc.) and Mechanical Properties • Carbon
	Equivalent (CE_{IIW} , P_{cm} , Expressions, Alloying Content and Carbon Content
	Effect)
1500 - 1515	Break
	Part 3 – Welding Related Disciplines: Welding & Joining Metallurgy
	(cont'd)
	Hydrogen Assisted Cracking (Heat-Affected Zone Cracking, Cold Cracking) Base
	Metal Matching (e.g., Electrodes with High Strength Steels) • Solidification
1515 – 1630	Cracking (Segregation of Impurity Atoms, Shrinkage Cracking, Lamellar
	Tearing) • Delta Ferrite in Stainless Consumables, Specifications for
	Consumables (Categories: All Position, Rutile, Basic) • Flux-Metal Reactions
	(Oxygen and Sulfur Control in Weld Pool) • Typical Temperature Range of a
	Heat Source
1630 – 1730	Distribute Homework & Recap
1730	End of Day Two

Day 3:	Tuesday, 14 th of January 2025
0730 - 0830	Homework Review
0830 – 1000	Part 3 – Welding Related Disciplines: Welding & Joining Metallurgy (cont'd) Temperature Distribution in a Weldment • HAZ Formation • Multipass Thermal Experience, Reheated Weld Metal Properties • Weld Macro and Micro- Graph Interpretation • Solidification Profile and Preferred Grain Orientation (Epitaxial Growth)
1000 - 1015	Break
1015 – 1200	Part 3 - Welding Related Disciplines: Welding & Joining Metallurgy (cont'd)Origin of Weld Ripples • Special Attributes of Base Metal (As-Cast Structure, Deformation Texture, Oxide on Flame-Cut Surfaces) • Thermal Treatments (Preheat, Postheat, Interpass Influence on Weld Cooling Rate and Residual Stress Distribution) • Solid-State Transformations in Welds (Different Forms of Ferrite, Bainite and Martensite, Sigma Phase in Stainless Steels, Guinier-Preston Type Precipitates Zones and Aging in Aluminum Alloys) • Corrosion (Sensitization In Stainless Steel Welds, Stress Corrosion Cracking
1200 - 1300	Lunch
1300 - 1500	Part 3 – Welding Related Disciplines: Weld Design Structural Fabrication Requirements, Sectional Properties, Stress Gradient • Stress Triaxiality, Weld Symbols, Hardness and Microhardness (e.g., Across a Weld Cross Section)

FE0863 - Page 10 of 17

1500 - 1515	Break
	Part 3 – Welding Related Disciplines: Weld Design (cont'd)
1515 - 1630	Tensile Properties, Ductility, Toughness, Fillet Break Test (Influence of Second
	Phase & Porosity) • Ductile Fracture, Brittle Fracture, Fatigue (Initiation,
	Propagation, Failure, High-Cycle, Low-cycle) • Temperature & Strain Rate Effect
1630 – 1730	Distribute Homework & Recap
1730	End of Day Three

Day 4:	Wednesday, 15 th of January 2025
0730 - 0830	Homework Review
0830 – 1000	Part 3 – Welding Related Disciplines: Brazing & Soldering Characteristics of Brazing and Soldering, Fluxes and Substrates, Capillary Action, Wetting and Spreading, Contact Angle, Joint Clearance, Viscosity, Liquidus and Solidus, Flow of Molten Filler in Horizontal and Vertical Joints (Maximum Penetration and Rate), Filler Metal Systems (Sn-Pb Solders, Ni and Cu Based Alloys, Ag-Cu Based Brazing Alloys) and Intermetallic Compound Formation
1000 - 1015	Break
1015 – 1200	Part 3 – Welding Related Disciplines: Brazing & Soldering (cont'd) Characteristics of Brazing and Soldering, Fluxes and Substrates, Capillary Action, Wetting and Spreading, Contact Angle, Joint Clearance, Viscosity, Liquidus and Solidus, Flow of Molten Filler in Horizontal and Vertical Joints (Maximum Penetration and Rate), Filler Metal Systems (Sn-Pb Solders, Ni and Cu Based Alloys, Ag-Cu Based Brazing Alloys) and Intermetallic Compound Formation (cont'd)
1200 - 1300	Lunch
1300 – 1500	Part 3 – Welding Related Disciplines: Safety Recognize Health Hazards Relating to Welding, (Fumes, Toxic Gases, Noise, Radiation). Recognize Safety Hazards, (Electric Shock, Compressed Gases, Fire, Welding in a Confined Space, Welding on Containers and Piping, Moving Equipment). Recognize Precautions to Avoid Injury and Possess a Working Knowledge of Safety and Fire Codes
1500 - 1515	Break
1515 - 1630	Part 3 – Welding Related Disciplines: Safety (cont'd) Recognize Health Hazards Relating to Welding, (Fumes, Toxic Gases, Noise, Radiation). Recognize Safety Hazards, (Electric Shock, Compressed Gases, Fire, Welding in a Confined Space, Welding on Containers and Piping, Moving Equipment). Recognize Precautions to Avoid Injury and Possess a Working Knowledge of Safety and Fire Codes (cont'd)
1630 – 1730	Distribute Homework & Recap
1730	End of Day Four

Day 5:	Thursday, 16 th of January 2025
0730 - 0830	Homework Review
0830 – 1000	Part 4 – Practical Welding & Related Applications: Exam using References on the Application of Welding Engineering Concepts in the Areas of Welding Safety • Weldment Design
1000 - 1015	Break

FE0863 - Page 11 of 17

1015 – 1200	Part 4 – Practical Welding & Related Applications: Exam using
	References on the Application of Welding Engineering Concepts in the
	Areas of (cont'd)
	Welding Metallurgy • Materials • Welding Process Selection
1200 - 1300	Lunch
1300 – 1500	Part 4 – Practical Welding & Related Applications: Exam using
	References on the Application of Welding Engineering Concepts in the
	Areas of (cont'd)
	NDE including Visual Weld Inspection, Quality Assurance, Quality Control in
	Accordance with Codes
1500 - 1515	Break
1515 – 1645	Part 4 – Practical Welding & Related Applications: Exam using
	References on the Application of Welding Engineering Concepts in the
	Areas of (cont'd)
	Specifications • Other Standards and/or Drawings
1645 – 1700	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1700 – 1715	POST-TEST
1715 – 1730	Presentation of Course Certificates
1730	End of Course

MOCK Exam

Upon the completion of the course, participants have to sit for a MOCK Examination similar to the exam of the Certification Body through Haward's Portal. Each Participant will be given a username and password to log in Haward's Portal for the Mock exam during the 7 days following the course completion. Each participant has only one trial for the MOCK exam within this 7-day examination window. Hence, you have to prepare yourself very well before starting your MOCK exam as this exam is a simulation to the one of the Certification Body.

FE0863 - Page 12 of 17

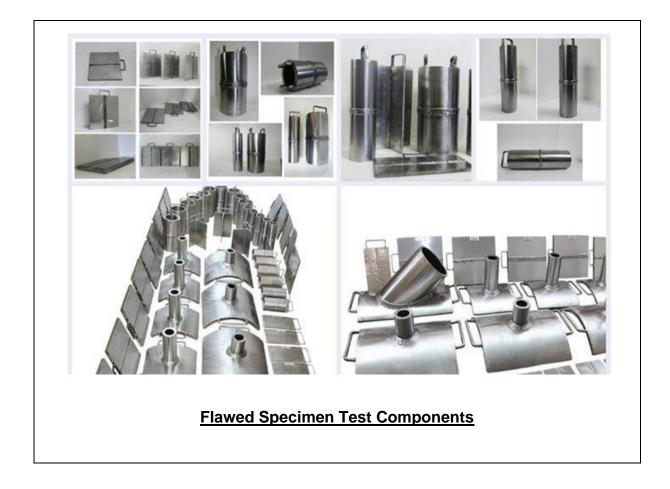
Simulator (Hands-on Practical Sessions)

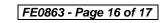
Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the state-of-the-art "E-Welding & Fabrication", "American Welding Society (AWS) Tool Kit, "Structural Weld Replica Kit", "Ultrasonic Testing (UT) Equipment", "Magnetic Yoke Testing Kit", "Liquid Penetrant Testing Kit" and our specifically designed flawed specimen test components.

FE0863 - Page 13 of 17

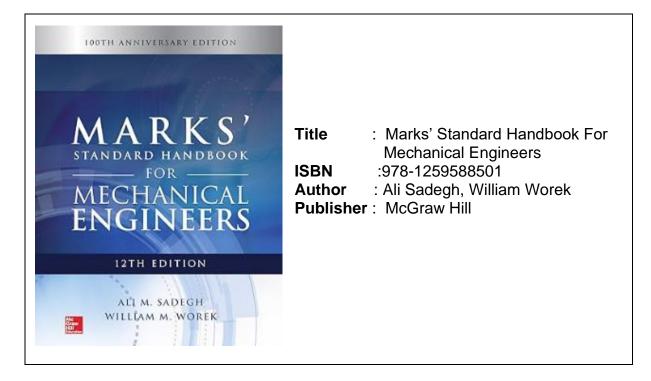
FE0863 - Page 14 of 17

Ultrasonic Testing (UT) Equipment

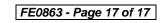

FE0863 - Page 15 of 17



Liquid Penetrant Testing Kit



Book(s)


As part of the course kit, the following e-book will be given to all participants:

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

