

COURSE OVERVIEW DE0535 Advanced Nodal Analysis for Production Engineers

O CEUS 30 PDHs)

Course Title

Advanced Nodal Analysis for Production Engineers

Course Date/Venue Please see page 3

Course Reference DE0535

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and Advanced overview of Nodal Analysis. It covers the prediction of rate at which a well should be capable of producing, given reservoir and fluid properties, wellbore configuration, and wellhead pressure; identifying flowing which components of the reservoir/completion/wellbore system are restricting performance; analyzing production data to find permeability, skin factor, and drainage area; and forecasting future performance from historical production trends and from known reservoir properties.

Further, the course will also discuss the components of a nodal analysis system and its applications in oil gas production; the inflow performance and relationships (IPR) for oil wells, gas wells, horizontal and multilateral wells, fractured wells, gas lift and artificial lift systems; the partial penetration effects wellbore and deviated effects; fracture the conductivity and dimensionless productivity index; the IPR for finite and infinite conductivity fractures and impact of fracture damage on well performance; the gravel pack and sand control completion effects, perforation density and phasing; the skin factor due to perforation damage; and optimizing perforation for maximum productivity.

DE0535 - Page 1 of 15

Moreover, the course covers the impact of tubing size on well performance, pressure losses in completion strings and optimizing completion design for nodal analysis; the production data analysis, rate transient analysis (RTA) and pressure transient analysis (PTA); the production forecasting techniques, material balance analysis and data integration with nodal analysis; and the fundamentals of decline curve analysis (DCA) for unconventional reservoirs.

During this interactive course, participants will learn the extrapolating decline curves for future performance, estimating ultimate recovery (EUR) and sensitivity analysis for future performance; the advanced DCA techniques, integration of DCA with nodal analysis and economic analysis and decision making; the nodal analysis for multiphase flow, gas condensate wells, water injection wells and complex well architectures; and the real-time data acquisition and analysis and continuous well performance optimization.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an advanced knowledge on nodal analysis
- Explain IPR relationships for oil and gas wells and identify the effect of completion issues (partial penetration, deviated wellbore, fracture stimulated well and gravel packs) upon IPR curves
- Apply production data analysis techniques as well as decline curve analysis and future performance estimations
- Discuss the components of a nodal analysis system and its applications in oil and gas production
- Explain the inflow performance relationships (IPR) for oil wells, gas wells, horizontal and multilateral wells, fractured wells, gas lift and artificial lift systems
- Describe partial penetration effects and deviated wellbore effects •
- Discuss fracture conductivity and dimensionless productivity index, IPR for finite and infinite conductivity fractures and impact of fracture damage on well performance
- Recognize gravel pack and sand control completion effects, perforation density and phasing, skin factor due to perforation damage and optimizing perforation for maximum productivity
- Implement the impact of tubing size on well performance, pressure losses in completion strings and optimizing completion design for nodal analysis
- Carryout production data analysis, rate transient analysis (RTA) and pressure transient analysis (PTA)
- Employ production forecasting techniques, material balance analysis and data integration with nodal analysis
- Discuss the fundamentals of decline curve analysis (DCA) for unconventional reservoirs
- Describe extrapolating decline curves for future performance, estimating ultimate recovery (EUR) and sensitivity analysis for future performance

DE0535 - Page 2 of 15

- Apply advanced DCA techniques, integration of DCA with nodal analysis and economic analysis and decision making
- Carryout nodal analysis for multiphase flow, gas condensate wells, water injection wells and complex well architectures
- Apply real-time data acquisition and analysis and continuous well performance optimization

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course covers systematic techniques and methodologies on advanced nodal analysis for production, operations and reservoir engineers, senior technicians and field supervisors with an engineering background.

Course Date/Venue

Session(s)	Date	Venue
1	May 04-08, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
2	July 14-18, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
3	September 21-25, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
4	November 10-14, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 8,000 per Delegate + VAT. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

DE0535 - Page 3 of 15

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

ACCREDITED
ACCREDITED
DECOVIDER

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking

DE0535 - Page 4 of 15

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Konstantin Zorbalas, MSc, BSc, is a Senior Petroleum Engineer & Well Completions Specialist with 30 years of offshore and onshore experience in the Oil & Gas, Refinery & Petroleum industries. His wide expertise includes OIP Estimation & Range of Uncertainty, Waterflood Management, Water Flooding, Water Flooding & Reservoir Sourcing Issues, Water Flooding, Reservoir Souring & Water Breakthrough, Well & Reservoir Management and Monitoring, Fishing Operations, Drilling & Work-Over Operations, Workover Best Practices, Well Testing, Completion Design & Operation, Well Stimulation

Workover, Well Stimulation & Workover Planning, Well Completion, Servicing & Work-Over and Operations, Completions & Workover, HSE in Work-Over & Drilling Operations, Well Testing Completion & Workover, Basic Drilling, Completion & Workover Operations, Advanced Drilling, Completion & Workovers Fluids, Cementing Integrity Evaluation, Cementing Design, Cement Integrity Assurance & Evaluation, Basic Cementing (Operations) & Basic Acidizing, Advanced Cementing Technology, Casing & Cementing, Advanced Cementing & Stimulation, Artificial Lift Systems, New Technology in Artificial Lift Systems, Artificial Lift Methods, Crude Oil Artificial Lift Operations, Artificial Lift Systems, Artificial Lift & Challenges, Artificial Lift Systems & Optimization Technology, Production Optimization with Artificial Lift System, Well Integrity & Artificial Lift, Formation Damage & Flow Assurance Issues, Formation Damage Evaluation, Prevention, Remediation & Control, Formation Damage (Causes, Prevention & Remediation), Well Completion Design & Operations, Crude Oil Market, Oil Reserves, Global Oil Supply & Demand, Government Legislation & Oil Contractual Agreements, Oil Projects & Their Feasibility (Revenue and Profitability), Oil & Gas Exploration and Methods, Oil & Gas Extraction, Oil Production & Refining, Technology Usage in Industrial Security; Oil & Gas Economics Modelling Evaluation Decision Making & Risk Analysis, Economic Evaluation & Global Profitability Criteria, Petroleum Economics, Fluid Properties & Phase Behaviour (PVT), Workovers & Completions, Acidizing Application in Sandstone & Carbonate, Well Testing Analysis, Reserves Evaluation, Reservoir Fluid Properties, Reservoir Monitoring, Heavy Oil Technology, Applied Water Technology, X-mas Tree & Wellhead Operations & Testing, Artificial Lift Systems (Gas Lift, ESP, and Rod Pumping), Well Cementing, Well Completion Design, Slickline Operations, Cased Hole Logging and Production Logging. Further, he is actively involved in Project Management with special emphasis in production technology and field optimization, performing conceptual studies, economic analysis with risk assessment and field development planning. He is currently the Senior Petroleum Engineer & Consultant of Abu Dhabi National Oil Company (ADNOC) Group of companies wherein he is involved in the mega-mature fields in the Arabian Gulf, predominantly carbonate reservoirs; designing the acid stimulation treatments with post-drilling rigless operations; utilizing CT with tractors and DTS systems; and he is responsible for gas production and preparing for reservoir engineering and simulation studies, well testing activities, field and reservoir monitoring, production logging and optimization and well completion design.

During his career life, Mr. Zorbalas worked as a Senior Production Engineer, Well Completion Specialist, Production Manager, Project Manager, Technical Manager, Trainer, Technical Supervisor & Contracts Manager, Production Engineer, Production Supervisor, Production Technologist, Technical Specialist, Business Development Analyst, Field Production Engineer and Field Engineer. He worked for many world-class oil/gas companies such as ZADCO, ADMA-OPCO, Oilfield International Ltd, Burlington Resources (later acquired by Conoco Phillips), MOBIL E&P, Saudi Aramco, Pluspetrol E&P SA, Wintershall, Taylor Energy, Schlumberger, Rowan Drilling and Yukos EP where he was in-charge of the design and technical analysis of a gas plant with capacity 1.8 billion m3/yr gas. His achievements include boosting oil production 17.2% per year since 1999 using ESP and Gas Lift systems.

Mr. Zorbalas has Master's and Bachelor's degrees in Petroleum Engineering from the Mississippi State University, USA. Further, he is an SPE Certified Petroleum Engineer, Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM), an active member of the Society of Petroleum Engineers (SPE) and has numerous scientific and technical publications and delivered innumerable training courses, seminars and workshops worldwide.

DE0535 - Page 5 of 15

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	<i>Introduction to Nodal Analysis</i> Definition & Purpose of Nodal Analysis • Components of a Nodal Analysis System • Applications in Oil & Gas Production • Workflow for Performing Nodal Analysis
0900 - 0930	Inflow Performance Relationships (IPR) for Oil WellsDarcy's Law & Vogel's IPR Equation • IPR for Undersaturated & Saturated Reservoirs • Multi-Phase Flow Considerations • Case Studies:IPR Curves for Oil Wells
0930 - 0945	Break
0945-1130	<i>Inflow Performance Relationships (IPR) for Gas Wells</i> Backpressure Equation & Pseudo-Steady-State Flow • IPR for Dry Gas & Gas Condensate Wells • Non-Darcy Flow Effects • Case Studies: IPR Curves for Gas Wells
1130 - 1215	<i>IPR for Horizontal & Multilateral Wells</i> <i>Flow Regimes in Horizontal Wells</i> • <i>IPR Modeling for Complex Well</i> <i>Geometries</i> • <i>Impact of Reservoir Anisotropy</i> • <i>Practical Examples &</i> <i>Calculations</i>
1215 – 1230	Break
1230 - 1330	<i>IPR for Fractured Wells</i> <i>Fracture Geometry & Conductivity</i> • <i>IPR Modeling for Hydraulically</i> <i>Fractured Wells</i> • <i>Impact of Fracture Length & Orientation</i> • <i>Case Studies:</i> <i>Fractured Well Performance</i>
1330 - 1420	IPR for Gas Lift & Artificial Lift SystemsIPR Considerations for Gas Lift Wells • Impact of Artificial Lift on WellPerformance • Nodal Analysis for ESP & Rod Pump Systems •Optimization Techniques for Lifted Wells
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

0730 - 0830	Partial Penetration Effects Skin Factor Due to Partial Penetration • Impact on IPR & Productivity Index • Modeling Techniques for Partially Penetrating Wells • Case Studies: Partial Penetration Scenarios
0830 - 0930	Deviated Wellbore Effects Skin Factor in Deviated Wells • Impact of Wellbore Angle on IPR • Flow Convergence in Deviated Wells • Practical Examples & Calculations
0930 - 0945	Break

DE0535 - Page 6 of 15

	Fracture Stimulated Well Performance
0045 1100	<i>Fracture Conductivity & Dimensionless Productivity Index</i> • <i>IPR for Finite</i>
0945 - 1100	& Infinite Conductivity Fractures • Impact of Fracture Damage on Well
	Performance • Case Studies: Fracture-Stimulated Well Analysis
	Gravel Pack & Sand Control Completion Effects
1100 1215	Skin Factor due to Gravel Packs • Impact of Sand Control on IPR •
1100 - 1213	Modeling Gravel Pack Completions • Case Studies: Gravel-Packed Well
	Performance
1215 – 1230	Break
	Perforation Strategy & its Impact on IPR
1220 1220	Perforation Density & Phasing • Skin Factor due to Perforation Damage •
1230 - 1330	Optimizing Perforation for Maximum Productivity • Case Studies:
	Perforation Design Analysis
	Tubing & Completion String Design
1220 1420	Impact of Tubing Size on Well Performance • Pressure Losses in Completion
1550 - 1420	Strings • Optimizing Completion Design for Nodal Analysis • Case
	Studies: Tubing Size Optimization
	Recap
1420 1430	Using this Course Overview, the Instructor(s) will Brief Participants about
1420 - 1430	the Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

	Basics of Production Data Analysis
0730 0830	<i>Objectives of Production Data Analysis</i> • <i>Types of Production Data (Rates,</i>
0730 - 0830	Pressures, etc.) • Data Quality Control & Preprocessing • Workflow for
	Production Data Analysis
	Rate Transient Analysis (RTA)
0830 - 0930	Fundamentals of RTA • Transient, Boundary-Dominated Flow Regimes •
	RTA for Unconventional Reservoirs • Case Studies: RTA Applications
0930 - 0945	Break
	Pressure Transient Analysis (PTA)
0945 – 1100	Fundamentals of PTA • Diagnostic Plots & Interpretation • PTA for
	Fractured & Horizontal Wells • Case Studies: PTA Applications
	Production Forecasting Techniques
1100 1215	Empirical & Analytical Forecasting Methods • Decline Curve Analysis for
1100 - 1215	Forecasting • Uncertainty Analysis in Production Forecasting • Case
	Studies: Production Forecasting Examples
1215 – 1230	Break
	Material Balance Analysis
1220 1220	Principles of Material Balance • Applications for Oil & Gas Reservoirs •
1230 - 1330	Combining Material Balance with Nodal Analysis • Case Studies: Material
	Balance Applications

DE0535 - Page 7 of 15

1330 - 1420	Data Integration with Nodal Analysis Integrating Production Data into Nodal Analysis • History Matching & Validation • Real-Time Data Integration for Well Optimization • Case Studies: Integrated Analysis Examples
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

	Fundamentals of Decline Curve Analysis (DCA)
0720 0820	Types of Decline Curves (Exponential, Hyperbolic, Harmonic) • Arps'
0750 - 0850	Decline Curve Equations • Applications of DCA in Reservoir Engineering
	• <i>Case Studies: DCA Examples</i>
	DCA for Unconventional Reservoirs
0020 0020	Challenges in Unconventional DCA • Modified Hyperbolic Decline Models
0850 - 0950	• DCA for Shale Gas & Tight Oil Wells • Case Studies: Unconventional
	DCA
0930 - 0945	Break
	Future Performance Estimation
0045 1100	Extrapolating Decline Curves for Future Performance • Estimating
0945 - 1100	Ultimate Recovery (EUR) • Sensitivity Analysis for Future Performance •
	Case Studies: Future Performance Estimation
	Advanced DCA Techniques
1100 1015	Type Curve Analysis • Machine Learning Applications in DCA •
1100 - 1213	Probabilistic Decline Curve Analysis • Case Studies: Advanced DCA
	Applications
1215 – 1230	Break
	Integration of DCA with Nodal Analysis
1000 1000	Combining DCA with Nodal Analysis for Well Optimization • Forecasting
1230 - 1330	Well Performance Under Different Scenarios • Case Studies: Integrated
	DCA & Nodal Analysis
	Economic Analysis & Decision Making
1330 – 1420	Economic Indicators (NPV, IRR) • Using Nodal Analysis & DCA for
	Economic Decisions • Case Studies: Economic Analysis Examples
	Recap
1420 1430	Using this Course Overview, the Instructor(s) will Brief Participants about
1420 - 1430	the Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

	0730 - 0830	Nodal Analysis for Multiphase Flow Multiphase Flow Correlations (Hagedorn-Brown, Beggs-Brill) • Impact of Multiphase Flow on Nodal Analysis • Case Studies: Multiphase Flow Analysis
	0830 – 0930	Nodal Analysis for Gas Condensate Wells Flow Behavior in Gas Condensate Reservoirs • Impact of Condensate Banking on IPR • Case Studies: Gas Condensate Well Analysis
	0930 - 0945	Break
**) * B		DE05355 - Page 8 of 15 DE05355-05-25 Rev.01 16 April 2025

	Nodal Analysis for Water Injection Wells
0945 – 1100	IPR for Water Injection Wells • Impact of Injection Pressure on Well
	Performance • Case Studies: Water Injection Well Analysis
	Nodal Analysis for Complex Well Architectures
1100 – 1215	Smart Wells & Intelligent Completions • Nodal Analysis for Multilateral
	Wells • Case Studies: Complex Well Analysis
1215 – 1230	Break
	Real-Time Monitoring & Optimization
1230 - 1400	Real-Time Data Acquisition & Analysis • Continuous Well Performance
	<i>Optimization</i> • <i>Case Studies: Real-Time Optimization Examples</i>
	Course Conclusion
1400 – 1415	Using this Course Overview, the Instructor(s) will Brief Participants about
	the Course Topics that were Covered During the Course
1415 - 1430	POST-TEST
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "Petrel Software", "COMPASS", "Monte Carlo", "KAPPA", "Interactive Petrophysics (IP)", "ECRIN", "PIPESIM", "Eclipse Software" and "PROSPER" software's.

DE0535 - Page 9 of 15

	und Level (System) VTXDs to System Lacel # Ste V North (True V	
Recent: T Design #1 (Company, Project)	(2, Site #1, Well #1, Wellbore #1)	
employees panale Company Project #2 She #1 Wel #1 here	Company C	×
Webure #1 Despit #1 (Hotshyse) In Sidemator Datas: Grand Level Data Beatster: 0.01 Grand Beatster: 0.01 Grand Beatster: 0.01 The Data Beatster: 0.01 Cond Card	Design +rildive to [JSR 2#ORM/10n If constant user Formulation were Parmetel Weighth MODULESLIDINENG Exercise To program ECH () aut of 1 lonnes in use - expiration Uninous() System Information	14 40 60
a.on Control of the second se	v 🖉	iane (Joh System AP) (Jogles * (Dogths R Magi m

DE0535 - Page 10 of 15

With the space With the		米(日間)株台株台(日前)PPの(約) ettinos, Loadino Data	
	Application Losday Prof Defaultion Losday Defaultion Defaultion Defaultion	Gewill Database Formals	R R R R R R R R R R R R R R R R R R R

File Edit Action View Window He	elp ?8] (3, 5) (3, 15) (5 (1	(= ð		
Setings Group: Group:	- Gauge	🕆 Fi New plot 🚽 🚰 🔟 🖸		
Hatery plan	Par -	12 12	New document - page 1/2 - Main options Man options Matanation Links Coments Tell type:	Plad type. Reference phase: (Autobio note: (Common Common
			Help CC Back Nex	t>> Cancel
I am			The the th	s Ins I
Interpretation (2)	1 12	10 9	12 12	

DE0535 - Page 11 of 15

DE0535 - Page 12 of 15

DE0535 - Page 13 of 15

DE0535 - Page 14 of 15

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

DE0535 - Page 15 of 15

