

OURSE OVERVIEW ME0840

Roll Pass Design & Mill Operation

Course Title

Roll Pass Design & Mill Operation

Course Date/Venue

April 06-10, 2026/Delma Meeting Room, Royal Rose Hotel Abu Dhabi, a Curio Collection by Hilton Affiliated Hotel, Abu Dhabi, UAE

Course Reference

ME0840

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Objectives

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of roll pass design and mill operation. It covers the hot rolling concepts and the metallurgy of rolling for ferrous and non-ferrous metals; the different elements of roll pass design according to power, torque and separating force calculations; the development and use of spreadsheet for roll pass design calculation; rolling mill arrangements, mill layouts and various equipment considerations; and the characteristics of flat pass design, its types of flat products and their tolerances.

During this interactive course, participants will learn the aspects of rounds, rod pass designs and rolling sequences; the various types of angles, several angle products and their tolerances; the products, tolerances and sequence of beams and channels; and the several guiding and troubleshooting techniques in roll pass design and mill operation.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply proper techniques, tools and procedures on roll pass design and mill operation
- Review and update knowledge on hot rolling concepts and the metallurgy of rolling for ferrous and non-ferrous metals
- Determine the different elements of roll pass design according to power, torque, and separating force calculations
- Use a spreadsheet for roll pass design calculation
- Evaluate rolling mill arrangements and mill layouts including various equipment considerations
- Identify the characteristics of flat pass design through its types of flat products and their tolerances
- Recognize the aspects of rounds and rod pass designs and become acquainted with round rolling sequences
- Characterize the various types of angles as well as several angle products and their tolerances
- Enhance knowledge on beams and channels through their products, tolerances, and sequences
- Apply several guiding and troubleshooting techniques in roll pass design and mill operation

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive “Haward Smart Training Kit” (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

The course covers systematic techniques and methodologies on roll pass design and mill operation for roll pass designers, mill engineers, guide and set-up shop personnel, mill operators and mill management personnel who are interested or involved in the hot rolling of steel.

Course Fee

US\$ 10,000 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's Certificates are accredited by the following international accreditation organizations:

- [British Accreditation Council \(BAC\)](#)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.
- [The International Accreditors for Continuing Education and Training \(IACET - USA\)](#)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. George Poulos, MBA, MSc, BSc, CEng, is a **Senior Corrosion & Metallurgical Engineer** with over 30 years of extensive experience within the **Oil & Gas, Petrochemical, Refinery, Construction, Aircraft & Shipbuilding** Industry. His wide experiences cover in the areas of **Steel Metallurgy, Steel Structure Welding, Steelmaking Slag, Steel Making Application, Steel Making Process, Steel Manufacturing, Steel Forging, Steel Manufacturing & Process Troubleshooting, Hot Rolling Process, Hot Strip Mill, Mill Operations, Roll Mill, Electric Arc Furnace (EAF), Slit Rolling, Pressure Vessels, Piping Inspection, Risk-Based Inspection, Fitness-for-Service (FFS), Metallurgical Failure, Metallurgy & Metallurgical Processes, Metallurgical Lab, Corrosion and Metallurgy, Analysis & Prevention, Corrosion Fabrication & Inspection, Fabrication & Repair, Corrosion Prevention, Corrosion Engineering, Corrosion Control, Corrosion Inhibition, Corrosion Management in Process Operations, Corrosion & Prevention of Failures, Material Selection, Cathodic Protection Systems, Carbon Steel Pipe Wall Thickness & Grade Selection, Ferro-Alloys, Heat Treatment & Prevention Techniques and Post Weld Heat Treatment**. Further, he is also well-versed in **Welding Inspection, Welding & Machine Techniques, TIG & Arc Welding, Shielded Metal Arc Welding, Gas Tungsten & Gas Metal Arc Welding, Welding Procedure Specifications & Qualifications, Aluminium Welding, Hot Work-Safety, SMAW, GTAW, Welding Techniques, Pipeline Welding Practices, Welding Engineering, Welding Fatigue & Fracture Mechanics, Welding Inspection Technology, Welding Safety, Welding Defects Analysis, Welding Technology, Welding Problems, Welding & Non Destructive Testing and Metallurgy Techniques**.

During his career life, Mr. Poulos has gained his practical and field experience through his various significant positions and dedication as the **Chief Executive, Head of Technical Studies, Manager, Senior Consultant, Lead Welding Engineer, Senior Welding Engineer, Design Engineer, Sales Engineer, Author, Welding Instructor, Visiting Lecturer and Technical Proposal Research Evaluator** from various international companies such as Greek Welding Institute, Hellenic Quality Forum and International Construction Companies such as Shipbuilding, Aircraft Industry and Oil and Gas Industry.

Mr. Poulos is a **Registered Chartered Engineer** and has a **Master's degree in Naval Architecture, a Bachelor's degree in Welding Engineering and a Master of Business Administration (MBA)** from the **Sunderland University, Aston University and Open University, UK**, respectively. Further, he is a **Certified Trainer/Instructor**, an active Member of Chartered Quality Institute (CQI), The British Welding Institute (TWI), The Royal Institution of Naval Architects (RINA) and American Welding Society (AWS), a Registered EWF/IW (European Welding Federation-International Welding Institute W/E) and an IRCA Accredited External Quality Systems Auditor through BVQI. He is an **Author** of Technical Book dealing with Protection/Health/Safety in the Welding/Cutting domain and delivered various trainings, seminars, conferences, workshops and courses globally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Monday, 06th of April 2026

0730 – 0800	Registration & Coffee
0800 – 0815	Welcome & Introduction
0815 – 0830	PRE-TEST
	Hot Rolling Concepts
0830 – 1030	<i>The Metallurgy of Rolling</i> • Plastic Deformation • Average Reduction and Elongation
1030 – 1045	Break
	Hot Rolling Concepts (cont'd)
1045 – 1130	Bite Angle Calculations and Limitations • Mass Flow • Introduction to Using a Spreadsheet for Roll Pass Design Calculation
1130 – 1230	Roll Pass Design Billet to Product • Rolling Plan • Breakdown Sequences
1230 – 1245	Break
	Roll Pass Design (cont'd)
1245 – 1420	Spread • Power, Torque and Separating Force Calculations • Creating and Using Power Curves
1420 – 1430	Recap
1430	Lunch & End of Day One

Day 2: Tuesday, 07th of April 2026

0730 – 1030	Mill Layouts & Equipment Considerations Historical Mill Arrangements • Reheating
1030 – 1045	Break
1045 – 1130	Mill Layouts & Equipment Considerations (cont'd) Rolling Mill Arrangements • Finishing Considerations
1130 – 1230	Mill Layouts & Equipment Considerations (cont'd) Mill Layouts • Continuous Mills
1230 – 1245	Break

1245 – 1420	Mill Layouts & Equipment Considerations (cont'd) Cross-Country Mills
1420 – 1430	Recap
1430	Lunch & End of Day Two

Day 3: Wednesday, 08th of April 2026

0730 – 1030	Flat Pass Design Types of Flat Products and their Tolerances • Development of Spreadsheet for Calculation
1030 – 1045	Break
1045 – 1130	Flat Pass Design (cont'd) Flat Rolling Sequences • Developing & Using a Spreadsheet for Calculation
1130 – 1230	Flat Pass Design (cont'd) Example Flat Pass Design • Using a Spreadsheet for Calculation
1230 – 1245	Break
1245 – 1420	Round & Rod Pass Design Types of Round Products and their Tolerances • Round Rolling Sequences
1420 – 1430	Recap
1430	Lunch & End of Day Three

Day 4: Thursday, 09th of April 2026

0730 – 1030	Round & Rod Pass Design (cont'd) Example Round Pass Design • Finishing Block Rolling
1030 – 1045	Break
1045 – 1130	Angles Angle Products and their Tolerances
1130 – 1230	Angles (cont'd) Angle Rolling Sequences
1230 – 1245	Break
1245 – 1420	Angles (cont'd) Example Angle Pass Design
1420 – 1430	Recap
1430	Lunch & End of Day Four

Day 5: Friday, 10th of April 2026

0730 – 1030	Beams & Channels Beam Products and their Tolerances • Beam Rolling Sequences • Example Beam Pass Design
1030 – 1045	Break
1045 – 1130	Beams & Channels (cont'd) Channel Products and their Tolerances • Channel Rolling Sequences • Example Channel Pass Design
1130 – 1230	Guiding Basic Guiding • Static Guides • Roller Guides • Shape Guiding
1230 – 1245	Break
1245 – 1345	Troubleshooting Defect Cause and Effects • Product Tolerances • Production
1345 – 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org